
282 IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 4, APRIL 2010

New Companding Transform for PAPR Reduction in OFDM
Yuan Jiang

Abstract—High peak-to-average power ratio (PAPR) is a major
drawback of orthogonal frequency division multiplexing (OFDM)
systems. Among the various PAPR reduction techniques, com-
panding transform appears attractive for its simplicity and
effectiveness. This paper proposes a new companding algorithm.
Compared with the others, the proposed algorithm offers an
improved bit error rate and minimized out-of-band interference
while reducing PAPR effectively. Theoretical analysis and nu-
merical simulation are presented.

Index Terms—Companding, OFDM, PAPR.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has been attracting substantial attention due to

its excellent performance under severe channel condition [1].
The rapidly growing application of OFDM includes WiMAX,
DVB/DAB and 4G wireless systems.

However, OFDM is not without drawbacks. One critical
problem is its high peak-to-average power ratio (PAPR) [1].
High PAPR increases the complexity of analog-to-digital
(A/D) and digital-to-analog (D/A) converters, and lowers the
efficiency of power amplifiers. Over the past decade various
PAPR reduction techniques have been proposed, such as block
coding, selective mapping (SLM) and tone reservation, just
to name a few [2]. Among all these techniques the simplest
solution is to clip the transmitted signal when its amplitude
exceeds a desired threshold. Clipping is a highly nonlinear
process, however. It produces significant out-of-band interfer-
ence (OBI).

A good remedy for the OBI is the so-called companding.
The technique ‘soft’ compresses, rather than ‘hard’ clips, the
signal peak and causes far less OBI. The method was first
proposed in [3], which employed the classical 𝜇-law transform
and showed to be rather effective. Since then many different
companding transforms with better performances have been
published [4]-[7].

This paper proposes and evaluates a new companding
algorithm. The algorithm uses the special airy function and is
able to offer an improved bit error rate (BER) and minimized
OBI while reducing PAPR effectively.

The paper is organized as follows. In the next section
the PAPR problem in OFDM is briefly reviewed. Section
III presents the new algorithm and its theoretical analysis,
followed by the performance simulation in Section IV. The
last section draws the conclusion.
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II. PAPR IN OFDM

Let 𝑋(0), 𝑋(1), ⋅ ⋅ ⋅ , 𝑋(𝑁−1) represent the data sequence
to be transmitted in an OFDM symbol with 𝑁 subcarriers.
The baseband representation of the OFDM symbol is given
by:

𝑥(𝑡) =
1√
𝑁

𝑁−1∑
𝑛=0

𝑋(𝑛)𝑒
𝑗2𝜋𝑛𝑡

𝑁 0 ≤ 𝑡 ≤ 𝑇, (1)

where 𝑇 is the duration of the OFDM symbol. According
to the central limit theorem, when 𝑁 is large, both the real
and imaginary parts of 𝑥(𝑡) become Gaussian distributed, each
with zero mean and a variance of E[∣𝑥(𝑡)∣2]/2, and the am-
plitude of the OFDM symbol follows a Rayleigh distribution.
Consequently it is possible that the maximum amplitude of
OFDM signal may well exceed its average amplitude. Practical
hardware (e.g. A/D and D/A converters, power amplifiers) has
finite dynamic range; therefore the peak amplitude of OFDM
signal must be limited.

PAPR is mathematically defined as:

PAPR = 10 log10
max[∣𝑥(𝑡)∣2]
1
𝑇

∫ 𝑇

0
∣𝑥(𝑡)∣2 𝑑𝑡

(dB). (2)

It is easy to see from (2) that PAPR reduction may be
achieved by decreasing the numerator max[∣𝑥(𝑡)∣2], increasing
the denominator (1/T) ⋅ ∫ 𝑇

0
∣𝑥(𝑡)∣2 𝑑𝑡, or both.

The effectiveness of a PAPR reduction technique is mea-
sured by the complementary cumulative distribution function
(CCDF), which is the probability that PAPR exceeds some
threshold, i.e.:

CCDF = Probability(PAPR > 𝑝0), (3)

where 𝑝0 is the threshold.

III. NEW COMPANDING ALGORITHM

OBI is the spectral leakage into alien channels. Quantifica-
tion of the OBI caused by companding requires the knowledge
of the power spectral density (PSD) of the companded signal.
Unfortunately analytical expression of the PSD is in general
mathematically intractable, because of the nonlinear compand-
ing transform involved. Here we take an alternative approach
to estimate the OBI. Let 𝑓(𝑥) be a nonlinear companding
function, and 𝑥(𝑡) = sin(𝜔𝑡) be the input to the compander.
The companded signal 𝑦(𝑡) is:

𝑦(𝑡) = 𝑓 [𝑥(𝑡)] = 𝑓 [sin(𝜔𝑡)] . (4)

Since 𝑦(𝑡) is a periodic function with the same period as 𝑥(𝑡),
𝑦(𝑡) can then be expanded into the following Fourier series:

𝑦(𝑡) =
+∞∑

𝑘=−∞
𝑐(𝑘)𝑒𝑗𝑘𝜔𝑡, (5)
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where the coefficients 𝑐(𝑘) is calculated as:

𝑐(𝑘) = 𝑐(−𝑘) =
1

𝑇

∫ 𝑇

0

𝑦(𝑡)𝑒−𝑗𝑘𝜔𝑡𝑑𝑡 𝑇 =
2𝜋

𝜔
. (6)

Notice that the input x in this case is a pure sinusoidal signal,
any 𝑐(𝑘) ∕= 0 for ∣𝑘∣ > 1 is the OBI produced by the nonlinear
companding process. Therefore, to minimize the OBI, 𝑐(𝑘)
must approach to zero fast enough as 𝑘 increases. It has
been shown that 𝑐(𝑘) ⋅ 𝑘−(𝑚+1) tends to zero if 𝑦(𝑡) and
its derivative up to the 𝑚-th order are continuous [8], or in
other words, 𝑐(𝑘) converges at the rate of 𝑘−(𝑚+1). Given an
arbitrary number n, the 𝑛-th order derivative of 𝑦(𝑡), 𝑑𝑛𝑦/𝑑𝑡𝑛,
is a function of 𝑑𝑖𝑓(𝑥)/𝑑𝑥𝑖, (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), as well as
sin(𝜔𝑡) and cos(𝜔𝑡), i.e.:

𝑑𝑛𝑦

𝑑𝑡𝑛
= 𝑔

(
𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
,
𝑑𝑛−1𝑓(𝑥)

𝑑𝑥𝑛−1
, ⋅ ⋅ ⋅ , 𝑑𝑓(𝑥)

𝑑𝑥
, sin(𝜔𝑡), cos(𝜔𝑡)

)
.

(7)
sin(𝜔𝑡) and and cos(𝜔𝑡) are continuous functions, 𝑑𝑛𝑦/𝑑𝑡𝑛

is continuous if and only if 𝑑𝑖𝑓(𝑥)/𝑑𝑥𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) are
continuous. Based on this observation we can conclude:

Companding introduces minimum amount of OBI if the
companding function 𝑓(𝑥) is infinitely differentiable.

The functions that meet the above condition are the smooth
functions.

We now propose a new companding algorithm using a
smooth function, namely the airy special function. The com-
panding function is as follows:

𝑓(𝑥) = 𝛽 ⋅ sign(𝑥) ⋅ [airy(0)− airy(𝛼 ⋅ ∣𝑥∣)] , (8)

where airy(⋅) is the airy function of the first kind. 𝛼 is
the parameter that controls the degree of companding (and
ultimately PAPR). 𝛽 is the factor adjusting the average output
power of the compander to the same level as the average input
power:

𝛽 =

√√√√⎷ 𝐸
[
∣𝑥∣2

]

𝐸
[
∣airy(0)− airy(𝛼 ⋅ ∣𝑥∣)∣2

] , (9)

where 𝐸[⋅] denotes the expectation.
The decompanding function is the inverse of 𝑓(𝑥):

𝑓−1(𝑥) =
1

𝛼
⋅ sign(𝑥) ⋅ airy−1

[
airy(0)− ∣𝑥∣

𝛽

]
, (10)

where the superscript -1 represents the inverse operation.
Notice that the input to the decompander is a quantized
signal with finite set of values. We can therefore numerically
pre-compute 𝑓−1(𝑥) and use table look-up to perform the
decompanding in practice.

Next we examine the BER performance of the algorithm.
Let 𝑦(𝑡) denote the output signal of the compander, 𝑤(𝑡) the
white Gaussian noise. The received signal can be expressed
as:

𝑧(𝑡) = 𝑦(𝑡) + 𝑤(𝑡). (11)

The decompanded signal �̃�(𝑡) simply is:

�̃�(𝑡) = 𝑓−1 [𝑧(𝑡)] = 𝑓−1 [𝑦(𝑡) + 𝑤(𝑡)] . (12)

Notice that the signal-to-noise ratio (SNR) in a typical additive
white Gaussian noise (AWGN) channel is much greater than

Fig. 1. Companding and decompanding profile.

Fig. 2. Power spectral density of original and companded signals (compander
input power = 3dBm, 𝛼 = 30).

1. Using the first order Taylor series expansion, (12) can be
approximated as follows:

𝑥(𝑡) ≈ 𝑥(𝑡) +
𝑑𝑓−1(𝑢)

𝑑𝑢
∣𝑢=𝑦(𝑡) ⋅ 𝑤(𝑡). (13)

Equation (13) shows that if 𝑦(𝑡) falls into the range of the de-
companding function 𝑓−1(𝑢) where 𝑑𝑓−1(𝑢)/𝑑𝑢∣𝑢=𝑦(𝑡) < 1,
the noise 𝑤(𝑡) is suppressed, and if 𝑦(𝑡) is out of the range,
𝑑𝑓−1(𝑢)/𝑑𝑢∣𝑢=𝑦(𝑡) > 1 and the noise is enhanced. Therefore,
if the parameter 𝛼 in (8) is properly chosen such that more
𝑦(𝑡) is within the noise-suppression range of 𝑓−1(𝑢), it is
possible to achieve better overall BER performance. It is worth
to mention though that BER and PAPR affect each other
adversely and therefore there is a tradeoff to make.

IV. PERFORMANCE SIMULATION

The OFDM system used in the simulation consists of 64
QPSK-modulated data points. The size of the FFT/IFFT is
256, meaning a 4× oversampling. Given the compander input
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Fig. 3. Complementary cumulative distribution function of original and
companded signals (compander input power = 3dBm, 𝛼 = 30).

Fig. 4. Bit error rate vs. SNR for original and companded signals in AWGN
channel (compander input power = 3dBm, 𝛼 = 30).

power of 3dBm, the parameter 𝛼 in the companding function
is chosen to be 30. Consequently about 19.6 percent of 𝑦(𝑡)
is within the noise-suppression range of the decompanding
function. Two other popular companding algorithms, namely
the 𝜇-law companding [3] and the exponential companding
[5], are also included in the simulation for the purpose of
performance comparison.

The simulated PSD of the companded signals is illustrated
in Fig. 2. The proposed algorithm produces OBI almost 3dB

lower than the exponential algorithm, 10dB lower than the
𝜇-law. The result is in line with our expectation. The 𝜇-law
function has a singularity in its second order derivative at x =
0 and therefore is expected to have the strongest OBI.

Fig. 3 depicts the CCDF of the three companding schemes.
The new algorithm is roughly 1.5dB inferior to the exponen-
tial, but surpasses the 𝜇-law by 2dB.

The BER vs. SNR is plotted in Fig. 4. Our algorithm out-
performs the other two. To reach a BER of 10−3, for example,

the required SNR are 8.9dB, 10.4dB and 11.7dB respectively
for the proposed, the exponential and the 𝜇-law companding
schemes, implying a 1.5dB and 2.8dB improvement with the
new algorithm. The amount of improvement increases as SNR
becomes higher.

One more observation from the simulation is: unlike the
exponential companding whose performance is found almost
unchanged under different degrees of companding, the new
algorithm is flexible in adjusting its specifications simply by
changing the value of 𝛼 in the companding function.

V. CONCLUSION

In this paper, we have proposed a new companding algo-
rithm. Both theoretical analysis and computer simulation show
that the algorithm offers improved performance in terms of
BER and OBI while reducing PAPR effectively.
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