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Abstract—Due to the increasing popularity of cloud computing, more and more data owners are motivated to outsource their data
to cloud servers for great convenience and reduced cost in data management. However, sensitive data should be encrypted before
outsourcing for privacy requirements, which obsoletes data utilization like keyword-based document retrieval. In this paper, we present
a secure multi-keyword ranked search scheme over encrypted cloud data, which simultaneously supports dynamic update operations
like deletion and insertion of documents. Specifically, the vector space model and the widely-used TF×IDF model are combined in
the index construction and query generation. We construct a special tree-based index structure and propose a “Greedy Depth-first
Search” algorithm to provide efficient multi-keyword ranked search. The secure kNN algorithm is utilized to encrypt the index and query
vectors, and meanwhile ensure accurate relevance score calculation between encrypted index and query vectors. In order to resist
statistical attacks, phantom terms are added to the index vector for blinding search results . Due to the use of our special tree-based
index structure, the proposed scheme can achieve sub-linear search time and deal with the deletion and insertion of documents flexibly.
Extensive experiments are conducted to demonstrate the efficiency of the proposed scheme.

Index Terms—Searchable encryption, multi-keyword ranked search, dynamic update, cloud computing.
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1 INTRODUCTION

C LOUD computing has been considered as a new
model of enterprise IT infrastructure, which can

organize huge resource of computing, storage and appli-
cations, and enable users to enjoy ubiquitous, convenient
and on-demand network access to a shared pool of
configurable computing resources with great efficiency
and minimal economic overhead [1]. Attracted by these
appealing features, both individuals and enterprises are
motivated to outsource their data to the cloud, instead of
purchasing software and hardware to manage the data
themselves.

Despite of the various advantages of cloud services,
outsourcing sensitive information (such as e-mails, per-
sonal health records, company finance data, government
documents, etc.) to remote servers brings privacy con-
cerns. The cloud service providers (CSPs) that keep the
data for users may access users’ sensitive information
without authorization. A general approach to protect
the data confidentiality is to encrypt the data before
outsourcing [2]. However, this will cause a huge cost in
terms of data usability. For example, the existing tech-
niques on keyword-based information retrieval, which
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are widely used on the plaintext data, cannot be directly
applied on the encrypted data. Downloading all the
data from the cloud and decrypt locally is obviously
impractical.

In order to address the above problem, researcher-
s have designed some general-purpose solutions with
fully-homomorphic encryption [3] or oblivious RAMs
[4]. However, these methods are not practical due to
their high computational overhead for both the cloud
sever and user. On the contrary, more practical special-
purpose solutions, such as searchable encryption (SE)
schemes have made specific contributions in terms of
efficiency, functionality and security. Searchable encryp-
tion schemes enable the client to store the encrypted data
to the cloud and execute keyword search over ciphertext
domain. So far, abundant works have been proposed
under different threat models to achieve various search
functionality, such as single keyword search, similarity
search, multi-keyword boolean search, ranked search,
multi-keyword ranked search, etc. Among them, multi-
keyword ranked search achieves more and more atten-
tion for its practical applicability. Recently, some dynamic
schemes have been proposed to support inserting and
deleting operations on document collection. These are
significant works as it is highly possible that the data
owners need to update their data on the cloud server.
But few of the dynamic schemes support efficient multi-
keyword ranked search.

This paper proposes a secure tree-based search scheme
over the encrypted cloud data, which supports multi-
keyword ranked search and dynamic operation on the
document collection. Specifically, the vector space model
and the widely-used “term frequency (TF)× inverse doc-
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ument frequency (IDF)” model are combined in the in-
dex construction and query generation to provide multi-
keyword ranked search. In order to obtain high search
efficiency, we construct a tree-based index structure and
propose a “Greedy Depth-first Search” algorithm based
on this index tree. Due to the special structure of our
tree-based index, the proposed search scheme can flex-
ibly achieve sub-linear search time and deal with the
deletion and insertion of documents. The secure kNN
algorithm is utilized to encrypt the index and query
vectors, and meanwhile ensure accurate relevance score
calculation between encrypted index and query vectors.
To resist different attacks in different threat models, we
construct two secure search schemes: the basic dynamic
multi-keyword ranked search (BDMRS) scheme in the
known ciphertext model, and the enhanced dynamic
multi-keyword ranked search (EDMRS) scheme in the
known background model. Our contributions are sum-
marized as follows:

1) We design a searchable encryption scheme that
supports both the accurate multi-keyword ranked
search and flexible dynamic operation on docu-
ment collection.

2) Due to the special structure of our tree-based index,
the search complexity of the proposed scheme is
fundamentally kept to logarithmic. And in practice,
the proposed scheme can achieve higher search
efficiency by executing our “Greedy Depth-first
Search” algorithm. Moreover, parallel search can be
flexibly performed to further reduce the time cost
of search process.

The reminder of this paper is organized as follows.
Related work is discussed in Section 2, and Section 3
gives a brief introduction to the system model, threat
model, the design goals, and the preliminaries. Section
4 describes the schemes in detail. Section 5 presents the
experiments and performance analysis. And Section 6
covers the conclusion.

2 RELATED WORK

Searchable encryption schemes enable the clients to store
the encrypted data to the cloud and execute keyword
search over ciphertext domain. Due to different cryptog-
raphy primitives, searchable encryption schemes can be
constructed using public key based cryptography [5], [6]
or symmetric key based cryptography [7], [8], [9], [10].

Song et al. [7] proposed the first symmetric searchable
encryption (SSE) scheme, and the search time of their
scheme is linear to the size of the data collection. Goh
[8] proposed formal security definitions for SSE and
designed a scheme based on Bloom filter. The search
time of Goh’s scheme is O (n), where n is the cardi-
nality of the document collection. Curtmola et al. [10]
proposed two schemes (SSE-1 and SSE-2) which achieve
the optimal search time. Their SSE-1 scheme is secure
against chosen-keyword attacks (CKA1) and SSE-2 is
secure against adaptive chosen-keyword attacks (CKA2).

These early works are single keyword boolean search
schemes, which are very simple in terms of functionality.
Afterward, abundant works have been proposed under
different threat models to achieve various search func-
tionality, such as single keyword search, similarity search
[11], [12], [13], [14], multi-keyword boolean search [15],
[16], [17], [18], [19], [20], [21], [22], ranked search [23],
[24], [25], and multi-keyword ranked search [26], [27],
[28], [29], etc.

Multi-keyword boolean search allows the users to
input multiple query keywords to request suitable docu-
ments. Among these works, conjunctive keyword search
schemes [15], [16], [17] only return the documents that
contain all of the query keywords. Disjunctive keyword
search schemes [18], [19] return all of the documents
that contain a subset of the query keywords. Predicate
search schemes [20], [21], [22] are proposed to support
both conjunctive and disjunctive search. All these multi-
keyword search schemes retrieve search results based
on the existence of keywords, which cannot provide
acceptable result ranking functionality.

Ranked search can enable quick search of the most
relevant data. Sending back only the top-k most relevant
documents can effectively decrease network traffic. Some
early works [23], [24], [25] have realized the ranked
search using order-preserving techniques, but they are
designed only for single keyword search. Cao et al.
[26] realized the first privacy-preserving multi-keyword
ranked search scheme, in which documents and queries
are represented as vectors of dictionary size. With the
“coordinate matching”, the documents are ranked ac-
cording to the number of matched query keywords.
However, Cao et al.’s scheme does not consider the
importance of the different keywords, and thus is not
accurate enough. In addition, the search efficiency of the
scheme is linear with the cardinality of document col-
lection. Sun et al. [27] presented a secure multi-keyword
search scheme that supports similarity-based ranking.
The authors constructed a searchable index tree based
on vector space model and adopted cosine measure
together with TF×IDF to provide ranking results. Sun et
al.’s search algorithm achieves better-than-linear search
efficiency but results in precision loss. Örencik et al. [28]
proposed a secure multi-keyword search method which
utilized local sensitive hash (LSH) functions to cluster
the similar documents. The LSH algorithm is suitable
for similar search but cannot provide exact ranking. In
[29], Zhang et al. proposed a scheme to deal with secure
multi-keyword ranked search in a multi-owner model. In
this scheme, different data owners use different secret
keys to encrypt their documents and keywords while
authorized data users can query without knowing keys
of these different data owners. The authors proposed
an “Additive Order Preserving Function” to retrieve the
most relevant search results. However, these works don’t
support dynamic operations.

Practically, the data owner may need to update the
document collection after he upload the collection to the
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cloud server. Thus, the SE schemes are expected to sup-
port the insertion and deletion of the documents. There
are also several dynamic searchable encryption schemes.
In the work of Song et al. [7], the each document is
considered as a sequence of fixed length words, and
is individually indexed. This scheme supports straight-
forward update operations but with low efficiency. Goh
[8] proposed a scheme to generate a sub-index (Bloom
filter) for every document based on keywords. Then
the dynamic operations can be easily realized through
updating of a Bloom filter along with the corresponding
document. However, Goh’s scheme has linear search
time and suffers from false positives. In 2012, Kamara
et al. [30] constructed an encrypted inverted index that
can handle dynamic data efficiently. But, this scheme
is very complex to implement. Subsequently, as an im-
provement, Kamara et al. [31] proposed a new search
scheme based on tree-based index, which can handle
dynamic update on document data stored in leaf n-
odes. However, their scheme is designed only for single-
keyword Boolean search. In [32], Cash et al. presented
a data structure for keyword/identity tuple named “T-
Set”. Then, a document can be represented by a series of
independent T-Sets. Based on this structure, Cash et al.
[33] proposed a dynamic searchable encryption scheme.
In their construction, newly added tuples are stored in
another database in the cloud, and deleted tuples are
recorded in a revocation list. The final search result is
achieved through excluding tuples in the revocation list
from the ones retrieved from original and newly added
tuples. Yet, Cash et al.’s dynamic search scheme doesn’t
realize the multi-keyword ranked search functionality.

3 PROBLEM FORMULATION

3.1 Notations and Preliminaries

• W – The dictionary, namely, the set of keywords,
denoted as W = {w1, w2, ..., wm}.

• m – The total number of keywords in W .
• Wq – The subset of W , representing the keywords

in the query.
• F – The plaintext document collection, denoted as a

collection of n documents F = {f1, f2, ..., fn}. Each
document f in the collection can be considered as a
sequence of keywords.

• n – The total number of documents in F .
• C – The encrypted document collection stored in the

cloud server, denoted as C = {c1, c2, ..., cn}.
• T – The unencrypted form of index tree for the

whole document collection F .
• I – The searchable encrypted tree index generated

from T .
• Q – The query vector for keyword set Wq .
• TD – The encrypted form of Q, which is named as

trapdoor for the search request.
• Du – The index vector stored in tree node u whose

dimension equals to the cardinality of the dictionary

W . Note that the node u can be either a leaf node
or an internal node of the tree.

• Iu – The encrypted form of Du.
Vector Space Model and Relevance Score Function.

Vector space model along with TF×IDF rule is widely
used in plaintext information retrieval, which efficiently
supports ranked multi-keyword search [34]. Here, the
term frequency (TF) is the number of times a given term
(keyword) appears within a document, and the inverse
document frequency (IDF) is obtained through dividing
the cardinality of document collection by the number of
documents containing the keyword. In the vector space
model, each document is denoted by a vector, whose
elements are the normalized TF values of keywords in
this document. Each query is also denoted as a vector
Q, whose elements are the normalized IDF values of
query keywords in the document collection. Naturally,
the lengths of both the TF vector and the IDF vector
are equal to the total number of keywords, and the
dot product of the TF vector Du and the IDF vector Q
can be calculated to quantify the relevance between the
query and corresponding document. Following are the
notations used in our relevance evaluation function:

• Nf,wi – The number of keyword wi in document f .
• N – The total number of documents.
• Nwi – The number of documents that contain key-

word wi.
• TF′

f,wi
– The TF value of wi in document f .

• IDF′
wi

– The IDF value of wi in document collection.
• TFu,wi – The normalized TF value of keyword wi

stored in index vector Du.
• IDFwi – The normalized IDF value of keyword wi

in document collection.
The relevance evaluation function is defined as:

RScore(Du, Q) = Du ·Q =
∑

wi∈Wq

TFu,wi × IDFwi . (1)

If u is an internal node of the tree, TFu,wi is calculated
from index vectors in the child nodes of u. If the u is a
leaf node, TFu,wi is calculated as:

TFu,wi
=

TF′
f,wi√∑

wi∈W(TF′
f,wi

)2
, (2)

where TF′
f,wi

= 1+ lnNf,wi
. And in the search vector Q,

IDFwi is calculated as:

IDFwi =
IDF′

wi√∑
wi∈Wq

(IDF′
wi
)2
, (3)

where IDF′
wi

= ln(1 + N/Nwi).
Keyword Balanced Binary Tree. The balanced binary

tree is widely used to deal with optimization problems
[35], [36]. The keyword balanced binary (KBB) tree in our
scheme is a dynamic data structure whose node stores a
vector D. The elements of vector D are the normalized
TF values. Sometimes, we refer the vector D in the node
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u to Du for simplicity. Formally, the node u in our KBB
tree is defined as follows:

u = ⟨ID, D, Pl, Pr, FID⟩, (4)

where ID denotes the identity of node u, Pl and Pr are
respectively the pointers to the left and right child of
node u. If the node u is a leaf node of the tree, FID
stores the identity of a document, and D denotes a vector
consisting of the normalized TF values of the keywords
to the document. If the node u is an internal node, FID
is set to null, and D denotes a vector consisting of the
TF values which is calculated as follows:

D[i] = max{u.Pl → D[i], u.Pr → D[i]}, i = 1, ...,m. (5)

The detailed construction process of the tree-based
index is illustrated in Section 4, which is denoted as
BuildIndexTree(F).

3.2 The System and Threat Models
The system model in this paper involves three different
entities: data owner, data user and cloud server, as
illustrated in Fig. 1.

Data owner has a collection of documents F =
{f1, f2, ..., fn} that he wants to outsource to the cloud
server in encrypted form while still keeping the capa-
bility to search on them for effective utilization. In our
scheme, the data owner firstly builds a secure searchable
tree index I from document collection F , and then
generates an encrypted document collection C for F .
Afterwards, the data owner outsources the encrypted
collection C and the secure index I to the cloud server,
and securely distributes the key information of trapdoor
generation (including keyword IDF values) and docu-
ment decryption to the authorized data users.

Besides, the data owner is responsible for the update
operation of his documents stored in the cloud server.
While updating, the data owner generates the update
information locally and sends it to the server.

Data users are authorized ones to access the doc-
uments of data owner. With t query keywords, the
authorized user can generate a trapdoor TD according
to search control mechanisms to fetch k encrypted docu-
ments from cloud server. Then, the data user can decrypt
the documents with the shared secret key.

Cloud server stores the encrypted document collection
C and the encrypted searchable tree index I for data
owner. Upon receiving the trapdoor TD from the data
user, the cloud server executes search over the index tree
I, and finally returns the corresponding collection of top-
k ranked encrypted documents. Besides, upon receiving
the update information from the data owner, the server
needs to update the index I and document collection C
according to the received information.

The cloud server in the proposed scheme is considered
as “honest-but-curious”, which is employed by lots of
works on secure cloud data search [25], [26], [27]. Specif-
ically, the cloud server honestly and correctly executes

search control (trapdoors)

access control (data decryption keys)

Semi-trusted

cloud server

encrypted

index tree

search

request

encrypted

documents

top-k ranked

result

 

Fig. 1. The architecture of ranked search over encrypted cloud data
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Fig. 2. Distribution of term frequency (TF) for (a) keyword “subnet”, and
(b) keyword “host”.

instructions in the designated protocol. Meanwhile, it is
curious to infer and analyze received data, which helps
it acquire additional information. Depending on what
information the cloud server knows, we adopt the two
threat models proposed by Cao et al. [26].

Known Ciphertext Model. In this model, the cloud
server only knows the encrypted document collection
C, the searchable index tree I, and the search trapdoor
TD submitted by the authorized user. That is to say, the
cloud server can conduct ciphertext-only attack (COA)
[37] in this model.

Known Background Model. Compared with known
ciphertext model, the cloud server in this stronger model
is equipped with more knowledge, such as the term
frequency (TF) statistics of the document collection. This
statistical information records how many documents are
there for each term frequency of a specific keyword in
the whole document collection, as shown in Fig. 2, which
could be used as the keyword identity. Equipped with
such statistical information, the cloud server can conduct
TF statistical attack to deduce or even identify certain
keywords through analyzing histogram and value range
of the corresponding frequency distributions [24], [25],
[27].

3.3 Design Goals

To enable secure, efficient, accurate and dynamic multi-
keyword ranked search over outsourced encrypted cloud
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Fig. 3. An example of the tree-based index with the document collection
F = {fi|i = 1, ..., 6} and cardinality of the dictionary m = 4. In the
construction process of the tree index, we first generate leaf nodes from
the documents. Then, the internal tree nodes are generated based on
the leaf nodes. This figure also shows an example of search process, in
which the query vector Q is equal to (0, 0.92, 0, 0.38). In this example,
we set the parameter k = 3 with the meaning that three documents will
be returned to the user. According to the search algorithm, the search
starts with the root node, and reaches the first leaf node f4 through
r11 and r22. The relevance score of f4 to the query is 0.92. After that,
the leaf nodes f3 and f2 are successively reached with the relevance
scores 0.038 and 0.67. Next, the leaf node f1 is reached with score
0.58 and replace f3 in RList. Finally, the algorithm will try to search
subtree rooted by r12, and find that there are no reasonable results in
this subtree because the relevance score of r12 is 0.52, which is smaller
than the smallest relevance score in RList.

data under the above models, our system has the follow-
ing design goals.

Dynamic: The proposed scheme is designed to pro-
vide not only multi-keyword query and accurate result
ranking, but also dynamic update on document collec-
tions.

Search Efficiency: The scheme aims to achieve sub-
linear search efficiency by exploring a special tree-based
index and an efficient search algorithm.

Privacy-preserving: The scheme is designed to pre-
vent the cloud server from learning additional infor-
mation about the document collection, the index tree,
and the query. The specific privacy requirements are
summarized as follows,

1) Index Confidentiality and Query Confidentiality: The
underlying plaintext information, including key-
words in the index and query, TF values of key-
words stored in the index, and IDF values of query
keywords, should be protected from cloud server;

2) Trapdoor Unlinkability: The cloud server should
not be able to determine whether two encrypted
queries (trapdoors) are generated from the same
search request;

3) Keyword Privacy: The cloud server could not i-
dentify the specific keyword in query, index or
document collection by analyzing the statistical
information like term frequency. Note that our
proposed scheme is not designed to protect access
pattern, i.e., the sequence of returned documents.

4 THE PROPOSED SCHEMES

In this section, we firstly describe the unencrypted dy-
namic multi-keyword ranked search (UDMRS) scheme

which is constructed on the basis of vector space model
and KBB tree. Based on the UDMRS scheme, two secure
search schemes (BDMRS and EDMRS schemes) are con-
structed against two threat models, respectively.

4.1 Index Construction of UDMRS Scheme
In Section 3, we have briefly introduced the KBB index
tree structure, which assists us in introducing the index
construction. In the process of index construction, we
first generate a tree node for each document in the
collection. These nodes are the leaf nodes of the index
tree. Then, the internal tree nodes are generated based
on these leaf nodes. The formal construction process of
the index is presented in Algorithm 1. An example of
our index tree is shown in Fig. 3. Note that the index
tree T built here is a plaintext.

Following are some notations for Algorithm 1. Be-
sides, the data structure of the tree node is defined as
⟨ID, D, Pl, Pr,FID⟩, where the unique identity ID for each
tree node is generated through the function GenID().

• CurrentNodeSet – The set of current processing
nodes which have no parents. If the number of
nodes is even, the cardinality of the set is denoted
as 2h(h ∈ Z+), else the cardinality is denoted as
(2h+ 1).

• TempNodeSet – The set of the newly generated
nodes.

In the index, if Du[i] ̸= 0 for an internal node u,
there is at least one path from the node u to some leaf,
which indicates a document containing the keyword wi.
In addition, Du[i] always stores the biggest normalized
TF value of wi among its child nodes. Thus, the possible
largest relevance score of its children can be easily
estimated.

4.2 Search Process of UDMRS Scheme
The search process of the UDMRS scheme is a recursive
procedure upon the tree, named as “Greedy Depth-
first Search (GDFS)” algorithm. We construct a result
list denoted as RList, whose element is defined as
⟨RScore, FID⟩. Here, the RScore is the relevance score
of the document fFID to the query, which is calculated
according to Formula (1). The RList stores the k accessed
documents with the largest relevance scores to the query.
The elements of the list are ranked in descending order
according to the RScore, and will be updated timely
during the search process. Following are some other
notations, and the GDFS algorithm is described in Al-
gorithm 2.

• RScore(Du, Q) – The function to calculate the rele-
vance score for query vector Q and index vector Du

stored in node u, which is defined in Formula (1).
• kthscore – The smallest relevance score in current

RList, which is initialized as 0.
• hchild – The child node of a tree node with higher

relevance score.
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Algorithm 1 BuildIndexTree(F)
Input: the document collection F = {f1, f2, ..., fn} with

the identifiers FID = {FID|FID = 1, 2, ..., n}.
Output: the index tree T

1: for each document fFID in F do
2: Construct a leaf node u for fFID, with u.ID =

GenID(), u.Pl = u.Pr = null, u.FID = FID, and
D[i] = TFfFID,wi for i = 1, ...,m;—

3: Insert u to CurrentNodeSet;
4: end for
5: while the number of nodes in CurrentNodeSet is

larger than 1 do
6: if the number of nodes in CurrentNodeSet is

even, i.e. 2h then
7: for each pair of nodes u′ and u′′ in

CurrentNodeSet do
8: Generate a parent node u for u′ and u′′, with

u.ID = GenID(), u.Pl = u′, u.Pr = u′′, u.FID =
0 and D[i] = max{u′.D[i], u′′.D[i]} for each
i = 1, ...,m;

9: Insert u to TempNodeSet;
10: end for
11: else
12: for each pair of nodes u′ and u′′ of the former

(2h− 2) nodes in CurrentNodeSet do
13: Generate a parent node u for u′ and u′′;
14: Insert u to TempNodeSet;
15: end for
16: Create a parent node u1 for the (2h− 1)-th and

2h-th node, and then create a parent node u for
u1 and the (2h+ 1)-th node;

17: Insert u to TempNodeSet;
18: end if
19: Replace CurrentNodeSet with TempNodeSet and

then clear TempNodeSet;
20: end while
21: return the only node left in CurrentNodeSet, name-

ly, the root of index tree T ;

Algorithm 2 GDFS(IndexTreeNode u)

1: if the node u is not a leaf node then
2: if RScore(Du, Q) > kthscore then
3: GDFS(u.hchild);
4: GDFS(u.lchild);
5: else
6: return
7: end if
8: else
9: if RScore(Du, Q) > kthscore then

10: Delete the element with the smallest relevance
score from RList;

11: Insert a new element ⟨RScore(Du, Q), u.FID⟩ and
sort all the elements of RList;

12: end if
13: return
14: end if

• lchild – The child node of a tree node with lower
relevance score.

Since the possible largest relevance score of documents
rooted by the node u can be predicted, only a part of
the nodes in the tree are accessed during the search
process. Fig. 3 shows an example of search process
with the document collection F = {fi|i = 1, ..., 6},
cardinality of the dictionary m = 4, and query vector
Q = (0, 0.92, 0, 0.38).

4.3 BDMRS Scheme
Based on the UDMRS scheme, we construct the basic
dynamic multi-keyword ranked search (BDMRS) scheme
by using the secure kNN algorithm [38]. The BDMRS
scheme is designed to achieve the goal of privacy-
preserving in the known ciphertext model, and the four
algorithms included are described as follows:

• SK ← Setup() Initially, the data owner generates the
secret key set SK, including 1) a randomly generat-
ed m-bit vector S where m is equal to the cardinality
of dictionary, and 2) two (m×m) invertible matrices
M1 and M2. Namely, SK = {S,M1,M2}.

• I ← GenIndex(F ,SK) First, the unencrypted
index tree T is built on F by using T ←
BuildIndexTree(F). Secondly, the data owner gener-
ates two random vectors {Du

′, Du
′′} for index vector

Du in each node u, according to the secret vector
S. Specifically, if S[i] = 0, Du

′[i] and Du
′′[i] will

be set equal to Du[i]; if S[i] = 1, Du
′[i] and Du

′′[i]
will be set as two random values whose sum equals
to Du[i]. Finally, the encrypted index tree I is built
where the node u stores two encrypted index vectors
Iu = {MT

1 Du
′,MT

2 Du
′′}.

• TD← GenTrapdoor(Wq,SK) With keyword set Wq ,
the unencrypted query vector Q with length of m
is generated. If wi ∈ Wq , Q[i] stores the normalized
IDF value of wi; else Q[i] is set to 0. Similarly, the
query vector Q is split into two random vectors
Q′ and Q′′. The difference is that if S[i] = 0, Q′[i]
and Q′′[i] are set to two random values whose sum
equals to Q[i]; else Q′[i] and Q′′[i] are set as the same
as Q[i]. Finally, the algorithm returns the trapdoor
TD = {M−1

1 Q′,M−1
2 Q′′}.

• RelevanceScore ← SRScore(Iu,TD) With the trap-
door TD, the cloud server computes the relevance
score of node u in the index tree I to the query. Note
that the relevance score calculated from encrypted
vectors is equal to that from unencrypted vectors as
follows:

Iu · TD
= (MT

1 Du
′) · (M−1

1 Q′) + (MT
2 Du

′′) · (M−1
2 Q′′)

= (MT
1 Du

′)T (M−1
1 Q′) + (MT

2 Du
′′)T (M−1

2 Q′′)

= Du
′TM1M

−1
1 Q′ +Du

′′TM2M
−1
2 Q′′

= Du
′ ·Q′ +Du

′′ ·Q′′

= Du ·Q
= RScore(Du, Q)

(6)
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Security analysis. We analyze the BDMRS scheme
according to the three predefined privacy requirements
in the design goals:

1) Index Confidentiality and Query Confidentiality: In the
proposed BDMRS scheme, Iu and TD are obfuscat-
ed vectors, which means the cloud server cannot
infer the original vectors Du and Q without the
secret key set SK. The secret keys M1 and M2 are
Gaussian random matrices. According to [38], the
attacker (cloud server) of COA cannot calculate the
matrices merely with ciphertext. Thus, the BDMRS
scheme is resilient against ciphertext-only attack
(COA) and the index confidentiality and the query
confidentiality are well protected.

2) Query Unlinkability: The trapdoor of query vector
is generated from a random splitting operation,
which means that the same search requests will
be transformed into different query trapdoors, and
thus the query unlinkability is protected. However,
the cloud server is able to link the same search
requests according to the same visited path and the
same relevance scores.

3) Keyword Privacy: In this scheme, the confidentiality
of the index and query are well protected that the
original vectors are kept from the cloud server. And
the search process merely introduces inner prod-
uct computing of encrypted vectors, which leaks
no information about any specific keyword. Thus,
the keyword privacy is protected in the known
ciphertext model. But in the known background
model, the cloud server is supposed to have more
knowledge, such as the term frequency statistics of
keywords. This statistic information can be visual-
ized as a TF distribution histogram which reveals
how many documents are there for every TF value
of a specific keyword in the document collection.
Then, due to the specificity of the TF distribution
histogram, like the graph slope and value range,
the cloud server could conduct TF statistical attack
to deduce/identify keywords [25], [24], [27]. In the
worst case, when there is only one keyword in the
query vector, i.e. the normalized IDF value for the
keyword is 1, the final relevance score distribution
is exactly the normalized TF distribution of this
keyword, which is directly exposed to cloud server.
Therefore, the BDMRS scheme cannot resist TF
statistical attack in the known background model.

4.4 EDMRS Scheme

The security analysis above shows that the BDMRS
scheme can protect the Index Confidentiality and Query
Confidentiality in the known ciphertext model. However,
the cloud server is able to link the same search requests
by tracking path of visited nodes. In addition, in the
known background model, it is possible for the cloud
server to identify a keyword as the normalized TF
distribution of the keyword can be exactly obtained from

the final calculated relevance scores. The primary cause
is that the relevance score calculated from Iu and TD
is exactly equal to that from Du and Q. A heuristic
method to further improve the security is to break such
exact equality. Thus, we can introduce some tunable
randomness to disturb the relevance score calculation. In
addition, to suit different users’ preferences for higher
accurate ranked results or better protected keyword
privacy, the randomness are set adjustable.

The enhanced EDMRS scheme is almost the same as
BDMRS scheme except that:

• SK ← Setup() In this algorithm, we set the secret
vector S as a m-bit vector, and set M1 and M2 are
(m + m′) × (m + m′) invertible matrices, where m′

is the number of phantom terms.
• I ← GenIndex(F ,SK) Before encrypting the index

vector Du, we extend the vector Du to be a (m+m′)-
dimensional vector. Each extended element Du[m+
j], j = 1, ...,m′, is set as a random number εj .

• TD ← GenTrapdoor(Wq,SK) The query vector Q
is extended to be a (m + m′)-dimensional vector.
Among the extended elements, a number of m′′

elements are randomly chosen to set as 1, and the
rest are set as 0.

• RelevanceScore ← SRScore(Iu,TD) After the exe-
cution of relevance evaluation by cloud server, the
final relevance score for index vector Iu equals to
Du ·Q+

∑
εv , where v ∈ {j|Q[m+ j] = 1}.

Security analysis. The security of EDMRS scheme is
also analyzed according to the three predefined privacy
requirements in the design goals:

1) Index Confidentiality and Query Confidentiality: Inher-
ited from BDMRS scheme, the EDMRS scheme can
protect index confidentiality and query confiden-
tiality in the known background model. Due to the
utilization of phantom terms, the confidentiality is
further enhanced as the transformation matrices
are harder to figure out [38].

2) Query Unlinkability: By introducing the random
value ε, the same search requests will generate dif-
ferent query vectors and receive different relevance
score distributions. Thus, the query unlinkability
is protected better. However, since the proposed
scheme is not designed to protect access pattern
for efficiency issues, the motivated cloud server
can analyze the similarity of search results to judge
whether the retrieved results come from the same
requests. In the proposed EDMRS scheme, the data
user can control the level of unlinkability by adjust-
ing the value of

∑
εv. This is a trade-off between

accuracy and privacy, which is determined by the
user.

3) Keyword Privacy: As is discussed in Section 4.3, the
BDMRS scheme cannot resist TF statistical attack in
the known background model, as the cloud server
is able to deduce/identify keywords through an-
alyzing the TF distribution histogram. Thus, the
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TABLE 1
The change of keyword IDF values after updating in a collection with 5000 documents.

Keyword
NO

Original
IDF values

IDF values in the updated collection
After deleting
100 documents

After deleting
300 documents

After adding
100 documents

After adding
300 documents

1 3.0332 3.0253 3.0166 3.0334 3.0267
2 3.2581 3.2581 3.2530 3.2628 3.2857
3 3.7616 3.7584 3.7431 3.7647 3.7550
4 3.8934 3.8926 3.8910 3.9128 3.9226
5 5.6304 5.6103 5.6861 5.6501 5.6885
6 5.7478 5.7277 5.6861 5.7675 5.8059
7 5.8121 5.7920 5.8192 5.8319 5.8702
8 7.4192 7.3990 7.3573 7.4390 7.4774
9 7.8244 7.8043 7.7626 7.8442 7.8827
10 8.5174 8.4972 8.4555 8.5372 8.5757

EDMRS scheme is designed to obscure the TF
distributions of keywords with the randomness of∑

εv. In order to maximize the randomness of rel-
evance score distributions, we need to get as many
different

∑
εv as possible. Given that there are 2ω

different choices of
∑

εv for each index vector, the
possibility that two

∑
εv sharing the same value

is 1/2ω . In the EDMRS scheme, the number of
different

∑
εv is equal to

(
m′

m′′

)
, which reaches the

maximum when m′/m′′ = 2. Hence, considering(
m′

m′′

)
≥ (m′/m′′)m

′′
= 2m

′′
, we set m′ = 2ω and

m′′ = ω so that the number of different
∑

εv is
greater than 2ω . Therefore, there are at least 2ω
dummy elements in every vector, and half of them
need to be randomly selected to generate

∑
εv in

each query. In addition, we set every εj to follow
the same uniform distribution U(µ′ − δ, µ′ + δ).
According to the central limit theorem, the

∑
εv

follows the normal distribution N(µ, σ2), where
expectation µ and standard deviation σ can be
calculated as: {

µ = ωµ′

σ2 = ωδ2/3.
(7)

In the real application, we can set µ = 0, and
balance the accuracy and privacy by adjusting the
variance σ.

4.5 Dynamic Update Operation of DMRS
After insertion or deletion of a document, we need
to update synchronously the index. Since the index of
DMRS scheme is designed as a balanced binary tree, the
dynamic operation is carried out by updating nodes in
the index tree. Note that the update on index is merely
based on document identifies, and no access to the
content of documents is required. The specific process
is presented as follows:

• {I ′s, ci} ← GenUpdateInfo(SK, Ts, i, updtype)) This
algorithm generates the update information {I ′s, ci}
which will be sent to the cloud server. In order
to reduce the communication overhead, the data
owner stores a copy of unencrypted index tree.
Here, the notion updtype ∈ {Ins,Del} denotes either

an insertion or a deletion for the document fi. The
notion Ts denotes the set consisting of the tree nodes
that need to be changed during the update. For
example, if we want to delete the document f4
in Fig. 3, the subtree Ts includes a set of nodes
{r22, r11, r}.

– If updtype is equal to Del, the data owner
deletes from the subtree the leaf node that stores
the document identity i and updates the vector
D of other nodes in subtree Ts, so as to generate
the updated subtree T ′

s . In particular, if the
deletion of the leaf node breaks the balance of
the binary index tree, we replace the deleted
node with a fake node whose vector is padded
with 0 and file identity is null. Then, the data
owner encrypts the vectors stored in the subtree
T ′
s with the key set SK to generate encrypted

subtree I ′s, and set the output ci as null.
– If updtype is equal to Ins, the data owner gen-

erates a tree node u = ⟨GenID(), D, null, null, i⟩
for the document fi, where D[j] = TFfi,wj for
j = 1, ...,m. Then, the data owner inserts this
new node into the subtree Ts as a leaf node and
updates the vector D of other nodes in subtree
Ts according to the Formula (5), so as to gener-
ate the new subtree T ′

s . Here, the data owner is
always preferable to replace the fake leaf nodes
generated by Del operation with newly inserted
nodes, instead of directly inserting new nodes.
Next, the data owner encrypts the vectors stored
in subtree T ′

s with the key set SK as described
in Section 4.4, to generate encrypted subtree I ′s.
Finally, the document fi is encrypted to ci.

• {I ′, C′} ← Update(I, C, updtype, I ′s, ci) In this al-
gorithm, cloud server replaces the corresponding
subtree Is(the encrypted form of Ts) with I ′s, so as
to generate a new index tree I ′. If updtype is equal
to Ins, cloud server inserts the encrypted document
ci into C, obtaining a new collection C′. If updtype
is equal to Del, cloud server deletes the encrypted
document ci from C to obtain the new collection C′.

Similar to the scheme in [31], our scheme can also
carry out the update operation without storing the index
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tree on data owner side. We choose to store the unen-
crypted index tree on the data owner side to tradeoff
storage cost for less communication burdens. In both of
the Kamara et al.’s scheme [31] and our design, it needs
to change a set of nodes to update a leaf node because
the vector data of an internal node is computed from
its children. If the data owner does not store the un-
encrypted subtree, the whole update process needs two
rounds of communications between the cloud server and
the data owner. Specifically, the data owner should firstly
download the involved subtree in encrypted form from
the cloud server. Secondly, the data owner decrypts the
subtree and updates it with the newly added or deleted
leaf node. Thirdly, the data owner re-encrypts the subtree
and uploads the encrypted subtree to the cloud server.
Finally, the cloud server replaces the old subtree with the
updated one. Thus, to reduce the communication cost,
we store an unencrypted tree on the data owner side.
Then, the data owner can update the subtree directly
with the newly added or deleted leaf node and encrypt
and upload the updated subtree to the cloud server. In
this case, the update operation can be finished with one
round of communication between the cloud server and
the data owner.

As a dynamic scheme, it is not reasonable to fix the
length of vector as the size of dictionary because the
newly-added document may contain the keywords out
of the dictionary. In the proposed scheme, we add some
blank entries in the dictionary and set corresponding
entries in each index vector as 0. If new keywords
appear while inserting documents, these blank entries
are replaced with new keywords. Then, the index vectors
of newly added documents are generated based on the
updated dictionary, while the other index vectors are not
affected and remain the same as before.

After several times of document updating, the real IDF
values of some keywords in the present collection may
have obviously changed. Therefore, as the distributor
of the IDF data, the data owner needs to recalculate
the IDF values for all keywords and distribute them to
authorized users. In Table 1, there are three classes of
keywords with different IDF value ranges. The smaller
IDF value means the keyword appears more frequently.
Table 1 shows that after adding or deleting 100 and 300
documents, the IDF values do not change a lot. Thus, the
data owner is unnecessary to update IDF values every
time when he executes update operation on the dataset.
The data owner can flexibly choose to check the change
of IDF values, and distribute the new IDF values when
these values have changed a lot.

4.6 Parallel Execution of Search

Owing to the tree-based index structure, the proposed
search scheme can be executed in parallel, which further
improves the search efficiency. For example, we assume
there are a set of processors P = {p1, ..., pl} available.
Given a search request, an idle processor pi is used to
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Fig. 4. The precision (a) and rank privacy (b) of searches with different
standard deviation σ.

TABLE 2
Precision test of [27]’s basic scheme.

NO Precision NO Precision
1
2
3
4
5
6
7
8

88%
94%
97%
100%
85%
89%
89%
96%

9
10
11
12
13
14
15
16

96%
86.7%
87.5%
100%
82.3%
100%
100%
71.1%

query the root r. If the search could be continued on
both the children, and there is an idle processor pj , the
processor pi continues to deal with one of the children
while processor pj deals with the other one. If there
is no idle processor, the current processor is used to
deal with the child with larger relevance score, and the
other child is put into a waiting queue. Once there is an
idle processor, it takes the oldest node in the queue to
continue the search. Note that all the processors share
the same result list RList.

5 PERFORMANCE ANALYSIS

We implement the proposed scheme using C++ language
in Windows 7 operation system and test its efficiency
on a real-world document collection: the Request for
Comments (RFC) [39]. The test includes 1) the search
precision on different privacy level, and 2) the efficiency
of index construction, trapdoor generation, search, and
update. Most of the experimental results are obtained
with an Intel Core(TM) Duo Processor (2.93 GHz), except
that the efficiency of search is tested on a server with
two Intel(R) Xeon(R) CPU E5-2620 Processors (2.0 GHz),
which has 12 processor cores and supports 24 parallel
threads.

5.1 Precision and Privacy

The search precision of scheme is affected by the dummy
keywords in EDMRS scheme. Here, the ’precision’ is
defined as that in [26]: Pk = k′/k, where k′ is the number
of real top-k documents in the retrieved k documents.
If a smaller standard deviation σ is set for the random
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Fig. 5. Time cost for index tree construction: (a) for the different sizes of
document collection with the fixed dictionary, m = 4000, and (b) for the
different sizes of dictionary with the fixed document collection, n = 1000.

TABLE 3
Storage consumption of index tree.

Size of dictionary 1000 2000 3000 4000 5000
BDMRS (MB) 73 146 220 293 367
EDMRS (MB) 95 168 241 315 388

variable
∑

εv, the EDMRS scheme is supposed to obtain
higher precision, and vice versa. The results are shown
in Fig. 4(a).

In the EDMRS scheme, phantom terms are added to
the index vector to obscure the relevance score calcula-
tion, so that the cloud server cannot identify keywords
by analyzing the TF distributions of special keywords.
Here, we quantify the obscureness of the relevance score
by “rank privacy”, which is defined as:

P ′
k =

∑
|ri − r′i|/k2, (8)

where ri is the rank number of document in the retrieved
top-k documents, and r′i is its real rank number in the
whole ranked results. The larger rank privacy denotes
the higher security of the scheme, which is illustrated in
Fig. 4(b).

In the proposed scheme, data users can accomplish
different requirements on search precision and privacy
by adjusting the standard deviation σ, which can be
treated as a balance parameter.

We compare our schemes with a recent work pro-
posed by Sun et al. [27], which achieves high search
efficiency. Note that our BDMRS scheme retrieves the
search results through exact calculation of document
vector and query vector. Thus, top-k search precision of
the BDMRS scheme is 100%. But as a similarity-based
multi-keyword ranked search scheme, the basic scheme
in [27] suffers from precision loss due to the clustering
of sub-vectors during index construction. The precision
test of [27]’s basic scheme is presented in Table 2. In each
test, 5 keywords are randomly chosen as input, and the
precision of returned top 100 results is observed. The test
is repeated 16 times, and the average precision is 91%.

5.2 Efficiency
5.2.1 Index Tree Construction
The process of index tree construction for document
collection F includes two main steps: 1) building an
unencrypted KBB tree based on the document collec-
tion F , and 2) encrypting the index tree with splitting
operation and two multiplications of a (m×m) matrix.
The index structure is constructed following a post order
traversal of the tree based on the document collection
F , and O(n) nodes are generated during the traversal.
For each node, generation of an index vector takes O(m)
time, vector splitting process takes O(m) time, and two
multiplications of a (m×m) matrix takes O(m2) time. As
a whole, the time complexity for index tree construction
is O(nm2). Apparently, the time cost for building index
tree mainly depends on the cardinality of document col-
lection F and the number of keywords in dictionary W .
Fig. 5 shows that the time cost of index tree construction
is almost linear with the size of document collection,
and is proportional to the number of keywords in the
dictionary. Due to the dimension extension, the index
tree construction of EDMRS scheme is slightly more
time-consuming than that of BDMRS scheme. Although
the index tree construction consumes relatively much
time at the data owner side, it is noteworthy that this
is a one-time operation.

On the other hand, since the underlying balanced
binary tree has space complexity O(n) and every node
stores two m-dimensional vectors, the space complexity
of the index tree is O(nm). As listed in Table 3, when
the document collection is fixed (n = 1000), the storage
consumption of the index tree is determined by the size
of the dictionary.

5.2.2 Trapdoor Generation
The generation of a trapdoor incurs a vector splitting
operation and two multiplications of a (m×m) matrix,
thus the time complexity is O(m2), as shown in Fig.
6(a). Typical search requests usually consist of just a few
keywords. Fig. 6(b) shows that the number of query key-
words has little influence on the overhead of trapdoor
generation when the dictionary size is fixed. Due to the
dimension extension, the time cost of EDMRS scheme is
a little higher than that of BDMRS scheme.

5.2.3 Search Efficiency
During the search process, if the relevance score at node
u is larger than the minimum relevance score in result
list RList, the cloud server examines the children of
the node; else it returns. Thus, lots of nodes are not
accessed during a real search. We denote the number
of leaf nodes that contain one or more keywords in the
query as θ. Generally, θ is larger than the number of
required documents k, but far less than the cardinality
of the document collection n. As a balanced binary tree,
the height of the index is maintained to be log n, and the
complexity of relevance score calculation is O(m). Thus,
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Fig. 6. Time cost for trapdoor generation: (a) for different sizes of
dictionary with the fixed number of query keywords, t = 10, and (b) for
different numbers of query keywords with the fixed dictionary, m = 4000.

the time complexity of search is O(θm log n). Note that
the real search time is less than θm logn. It is because
1) many leaf nodes that contain the queried keywords
are not visited according to our search algorithm, and 2)
the accessing paths of some different leaf nodes share
the mutual traversed parts. In addition, the parallel
execution of search process can increase the efficiency
a lot.

We test the search efficiency of the proposed scheme
on a server which supports 24 parallel threads. The
search performance is tested respectively by starting 1, 4,
8 and 16 threads. We compare the search efficiency of our
scheme with that of Sun et al. [27]. In the implementation
of Sun’s code, we divide 4000 keywords into 50 levels.
Thus, each level contains 80 keywords. According to [27],
the higher level the query keywords reside, the higher
the search efficiency is. In our experiment, we choose
ten keywords from the 1st level (the highest level, the
optimal case) for search efficiency comparison. Fig. 7
shows that if the query keywords are chosen from the
1st level, our scheme obtains almost the same efficiency
as [27] when we start 4 threads.

Fig. 7 also shows that the search efficiency of our
scheme increases a lot when we increase the number
of threads from 1 to 4. However, when we continue to
increase the threads, the search efficiency is not increased
remarkably. Our search algorithm can be executed in
parallel to improve the search efficiency. But all the start-
ed threads will share one result list RList in mutually
exclusive manner. When we start too many threads, the
threads will spend a lot of time for waiting to read and
write the RList.

An intuitive method to handle this problem is to
construct multiple result lists. However, in our scheme,
it will not help to improve the search efficiency a lot. It
is because that we need to find k results for each result
list and time complexity for retrieving each result list is
O(θm log n/l). In this case, the multiple threads will not
save much time, and selecting k results from the multiple
result list will further increase the time consumption.
In the Fig. 8, we show the time consumption when
we start multiple threads with multiple result lists. The
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Fig. 7. The efficiency of a search with ten keywords of interest as input:
(a) for the different sizes of document collection with the same dictionary,
m = 4000, and (b) for different numbers of retrieved documents with the
same document collection and dictionary, n = 1000, and m = 4000.
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Fig. 8. The efficiency of a search with ten keywords of interest as input:
(a) for the different sizes of document collection with the same dictionary,
m = 4000, and (b) for different numbers of retrieved documents with the
same document collection and dictionary, n = 1000, and m = 4000.

experimental results prove that our scheme will obtain
better search efficiency when we start multiple threads
with only one result list.

5.2.4 Update Efficiency
In order to update a leaf node, the data owner needs
to update log n nodes. Since it involves an encryption
operation for index vector at each node, which takes
O(m2) time, the time complexity of update operation
is thus O(m2 log n). We illustrate the time cost for the
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Fig. 9. Time cost for deletion of a document: (a) for the different sizes of
document collection with the same dictionary, m = 4000, and (b) for the
same document collection with different sizes of dictionary, n = 1000.

deletion of a document. Fig. 9(a) shows that when the
size of dictionary is fixed, the deletion of a document
takes nearly logarithmic time with the size of document
collection. And Fig. 9(b) shows that the update time is
proportional to the size of dictionary when the document
collection is fixed.

In addition, the space complexity of each node is
O(m). Thus, space complexity of the communication
package of updating a document is O(m log n).

6 CONCLUSION AND FUTURE WORK

In this paper, a secure, efficient and dynamic search
scheme is proposed, which supports not only the accu-
rate multi-keyword ranked search but also the dynam-
ic deletion and insertion of documents. We construct
a special keyword balanced binary tree as the index,
and propose a “Greedy Depth-first Search” algorithm to
obtain better efficiency than linear search. In addition,
the parallel search process can be carried out to further
reduce the time cost. The security of the scheme is
protected against two threat models by using the secure
kNN algorithm. Experimental results demonstrate the
efficiency of our proposed scheme.

There are still many challenge problems in symmetric
SE schemes. In the proposed scheme, the data owner
is responsible for generating updating information and
sending them to the cloud server. Thus, the data owner
needs to store the unencrypted index tree and the infor-
mation that are necessary to recalculate the IDF values.
Such an active data owner may not be very suitable for
the cloud computing model. It could be a meaningful
but difficult future work to design a dynamic searchable
encryption scheme whose updating operation can be
completed by cloud server only, meanwhile reserving
the ability to support multi-keyword ranked search. In
addition, as the most of works about searchable encryp-
tion, our scheme mainly considers the challenge from the
cloud server. Actually, there are many secure challenges
in a multi-user scheme. Firstly, all the users usually
keep the same secure key for trapdoor generation in a
symmetric SE scheme. In this case, the revocation of the
user is big challenge. If it is needed to revoke a user in

this scheme, we need to rebuild the index and distribute
the new secure keys to all the authorized users. Secondly,
symmetric SE schemes usually assume that all the data
users are trustworthy. It is not practical and a dishonest
data user will lead to many secure problems. For exam-
ple, a dishonest data user may search the documents and
distribute the decrypted documents to the unauthorized
ones. Even more, a dishonest data user may distribute
his/her secure keys to the unauthorized ones. In the
future works, we will try to improve the SE scheme to
handle these challenge problems.
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