
IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016 637

Resource Allocation in Cloud Computing Using
the Uncertainty Principle of Game Theory

Parvathy S. Pillai, Student Member, IEEE, and Shrisha Rao, Senior Member, IEEE

Abstract—Virtualization of resources on the cloud offers a scal-
able means of consuming services beyond the capabilities of small
systems. In a cloud that offers infrastructure such as processor,
memory, hard disk, etc., a coalition of virtual machines formed by
grouping two or more may be needed. Economical management of
cloud resources needs allocation strategies with minimum wastage,
while configuring services ahead of actual requests. We propose a
resource allocation mechanism for machines on the cloud, based
on the principles of coalition formation and the uncertainty prin-
ciple of game theory. We compare the results of applying this
mechanism with existing resource allocation methods that have
been deployed on the cloud. We also show that this method of
resource allocation by coalition-formation of the machines on the
cloud leads not only to better resource utilization but also higher
request satisfaction.

Index Terms—Cloud computing, coalition formation, game
theory, resource allocation, uncertainty principle.

I. INTRODUCTION

INFRASTRUCTURE as a service (IaaS) cloud systems offer
computational infrastructure services to multiple clients by

means of virtual machines (VMs). The recent surge in the popu-
larity of IaaS cloud systems can be attributed to the on-demand
availability of computing resources such as processor cores,
memory, disks, etc., packages as VMs that are billed on use [1],
[2]. At times, the service requirements are such that not all VMs
can be hosted on a single machine. Incoming task requests may
demand VMs of different capacities as well. In this scenario,
coalitions of machines need to be formed to service a particular
request [3]. In particular, in IaaS systems, VMs are available in
specific configurations that are further customized by clients by
adding operating systems and software on top [2]. Coalitions
of preconfigured VMs created before the arrival of requests
address scalability concerns to a large extent, in addition to
shortening response times.

In this paper, we model the cloud as a multi-agent system
that is composed of agents (machines) with varied capabilities.
Allocation of resources to perform specific tasks requires agents
to form coalitions, as the resource requirements may be beyond
the capabilities of any single agent (machine). Coalition forma-
tion is modeled as a game and uses the uncertainty principle of
game theory [4] to arrive at approximately optimal strategies of
the game [5].

Manuscript received July 19, 2013; revised September 11, 2013, January 12,
2014, and March 23, 2014; accepted March 26, 2014. Date of publication
May 9, 2014; date of current version May 30, 2016.

P. S. Pillai is with the School of Computing, National University of
Singapore, Singapore 117417 (e-mail: parvathysp@ieee.org).

S. Rao is with the International Institute of Information Technology
Bangalore, Bangalore-560100, India (e-mail: shrao@ieee.org).

Digital Object Identifier 10.1109/JSYST.2014.2314861

Optimizing resource allocation to ensure the best perfor-
mance can be done in many ways. Present IaaS service
providers, largely unaware of application-level requirements,
do not provide any optimization by configuring the required
software on the VMs. Relying only on application-level op-
timization is not sensible, as such is restricted to an existing
infrastructure allocation. The placement of VMs is, however, in
the hands of the IaaS provider and can be changed based on the
topology of the machines in the cloud system. Application-level
optimization techniques [6]—along with topology-based VM
placement—offers better chances of performance improvement
with lower resource wastage.

The cloud may be built up of tens of thousands (or even
more) of physical machines, and considering each one as a
possible host for a requested VM rapidly grows out of pro-
portion as requests keep coming. Cloud providers today have
stuck to offering services of VMs of specific sizes. For instance,
Microsoft’s Azure [7] provides VMs of configurations as shown
in Table I. Hence, the cloud providers’ current situation is that
they know the type of VMs that may be requested but are
unaware of the exact request specifications such as the number
of instances of a particular type of VM. The other fact to be
highlighted is that VMs are not capable of getting configured on
the go. They have to be up and running on the host machines.

Game-theoretic approaches in general help simplify complex
problems to a great extent. Former game-theoretic approaches
to similar problems have needed the use of integer program-
ming for solving the payoff matrix for optimization. Integer
programming has a high complexity and goes out of bounds
if the number of machines and requests increase even by a
modest amount [8]. Our approach, however, has been to find
only the machine combinations by solving the simpler equation
of Theorem 1 and offers an alternative to integer programming.

Our resource allocation mechanism for the cloud prioritizes
different aspects.

1) We wish to take advantage of any knowledge of the types
of VMs that may be requested. This foresight of the
demand allows us to form coalitions of machines to host
VMs even without the actual request being yet available.

2) In data-intensive applications such as MapReduce [9] or
even web search [10], the placement of disks that hold
data can affect performance to a great extent. Taking this
into account, coalitions of machines that are closer in
proximity (facilitating lowered data movement) are given
higher payoffs.

3) The exact task information is uncertain until the arrival of
the actual request.

1937-9234 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: parvathysp@ieee.org
mailto: shrao@ieee.org

638 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

TABLE I
MICROSOFT AZURE VM CONFIGURATIONS [7]

Thus, we implement a resource allocation mechanism for the
cloud that is demand-aware, topology-aware and uses a game-
theoretic approach based on coalition formation of machines
for requests with uncertain task information. With these ideas
in place, we can use our agent-based resource allocation mech-
anism for the IaaS cloud.

The evaluation of the efficacy of our approach is carried out
by comparison with common commercial allocation strategies
on the cloud. We evaluate it based on randomly generated VM
requests that include data-intensive requests. These workloads
are chosen because they are very generic and do not solely
apply to a specific application domain. Evaluations consider
the time for task allocation, resource wastage, and request
satisfaction. The results are, as we shall discuss later, quite
encouraging.

The rest of this paper is as follows. The related work is
touched upon in Section II. Section III briefly introduces the
uncertainty principle of game theory and coalition formation.
Our system model and proposed solution are presented in
Section IV. Section V presents the algorithms, and Section VI
explains the approach taken for experimentation and discusses
the results. Section VII concludes this paper.

II. RELATED WORK

A. Comparison With Earlier Work

In earlier work [5], we developed an agent-based resource
allocation mechanism under uncertain task specification, using
the principle of coalition formation from game theory. Servers
in server farms were modeled as agents differing in their
resource capabilities based on their compute, memory, and
storage capacities; the platforms they support; their software
configurations; and so on. Each request from clients may re-
quire some multitude of these resources to be utilized. Servers
form coalitions prior to the arrival of task requests from clients.
We assumed that the server agents know a possible set of
tasks that may be allotted to them, but not the exact one. Each
server agent chooses a coalition (strategy) from a set of feasible
coalitions (strategies). Prioritizing coalitions by agents happens
by applying the uncertainty principle of game theory for zero-
sum games. Such pre-computation is an important benefit as
it avoids the delays inherent in reacting to requests after they
have been made. The proposed model is for nonoverlapping
coalitions and considers the priority of the task involved in
calculating the payoff associated with the game instances.

As compared to our previous work, the present modified
approach is for the cloud rather than server farms. The host
machines are capable of being part of multiple coalitions,
provided that their participation does not exceed the maximum

number specified for each machine. The coalitions are also not
limited to having a pre-defined number of members.

B. Literature

Resource allocation [11] has been widely researched with
respect to operating systems, grid computing, server farms,
and cloud computing management. The aim of allocation
mechanisms is to guarantee a mapping to satisfy client re-
quirements with the provider’s infrastructure. In this regard,
many resource allocation strategies have been proposed, which
focus on different aspects of performance. Some considerations
taken into account while devising a resource allocation strategy
are the current workload of the cloud, minimum response
time, maximum satisfaction of requests, and minimum resource
wastage [11]. Hence, we can say that resource allocation is an
optimization problem [12].

Demand-based resource allocation assigns resources
on the cloud dynamically based on the current workload.
Such algorithms also help improve energy efficiency.
Shanmuganathan et al. [13] proposed two algorithms, which
are called Distributed Binary Search and Base + Proportional
Excess, that dynamically allocate the overall capacity among
VMs based on their demand, user importance, reservation,
and limit settings. Demand forecasting techniques are used
by Cao et al. [14] to implement a power-saving approach to
resource allocation, which itself is modeled as a modified
knapsack problem. Another on-demand strategy proposed by
Chen et al. [15] can satisfy user requirements in limited time,
with guaranteed lowest request refusal rates. This algorithm
uses resource reconfiguration as a strategy to satisfy user
requirements.

Game-theoretic approaches to resource allocation in dis-
tributed systems are well known. A market-like environment
is used in auction-based decentralized resource scheduling
[16] to mitigate the complexities involved in message pass-
ing, reaching a closure, and allocating the final schedule,
which are issues associated with distributed systems in general.
Raman et al. [17] modeled resource management as an in-
stance of matchmaking. Game-theoretic resource allocation
on the cloud as proposed by Wei et al. [18] follows a two-
step mechanism. In the first step, each participant solves its
optimization problem independently, without considering the
multiplexing of resource assignments. In the second, an evo-
lutionary mechanism changing the multiplexed strategies of the
initial optimal solutions (minimizing their efficiency losses) is
designed. Prasad and Rao [19] used auction-based mechanisms
for resource procurements by cloud brokers.

Different methods for task allocation via agent coalition
formation are discussed by Shehory and Kraus [20], whose
algorithm consists of two main steps involving calculation of
possible coalitions and coalition formation, in scenarios of
nonoverlapping and overlapping coalitions. Automated multi-
party negotiation and task-oriented resource-sharing coalitions
for computational grids are studied by He and Ioerger [21].
Agent-based resource allocation in grid computing [22] and
resource and revenue sharing on the cloud using coalition
formation [23] are also known. Niyato et al. [23] considered

PILLAI AND RAO: RESOURCE ALLOCATION IN CLOUD COMPUTING 639

the multiple cloud providers as agents who form the coalition.
These approaches to coalition formation are very useful when
clear task specifications exist, but less so when they do not.
Combining coalition formation and game theory, Hassan et al.
[24] proposed a solution for dynamic resource allocation in
a cloud federation. Cloud providers are defined with price
functions that give incentives to other clouds to contribute
resources and to form a federation. Coalition-based games are
effective in fields that need cooperation from different agents.
Saad et al. [25] discussed coalition formation in wireless net-
works to maximize utilities of network partitioning of anten-
nas. Mashayekhy and Grosu [26] proposed dynamic virtual
organization formation on the grid based on coalitional game
theory. In later work, Mashayekhy and Grosu [12] designed a
mechanism that enables cloud providers to dynamically form a
cloud federation to maximize their profit.

Communication-aware job placement has been worked on in
the grid computing community. Such work mostly deals with
the overheads of WAN communication between grid sites [27].
For data-intensive applications such as MapReduce, Lee et al.
[28] proposed a topology-aware resource allocation mechanism
for IaaS-based cloud systems, using a prediction engine and
genetic algorithm to find an optimal solution in a large search
space.

An approach to coalition formation with uncertain hetero-
geneous information [29] was used for Request For Proposal
management, where each task is divided into multiple subtasks.
The heuristic ranks the possible coalitions and follows it with
a negotiation step for establishing coalitions. An auction-based
approach for coalition formation under uncertainty is described
by Hosam and Khaldoun [30] and uses a Markov decision
process (MDP) for formalizing subtask selection.

C. Notes

Tasks, resources, and their relationships are involved in the
decision of their execution schedule on any system. Subtask
dependencies and their turnaround times are important con-
siderations in a scheduling problem. Our work follows the
resource allocation problem in particular, as compared to the
on-demand method for scheduling. Wei et al. [18] applied
game theory in an evolutionary algorithm to improve upon the
initial independent optimal allocation formed by solving binary
integer programs. We use game theory for ordering coalitions
of host machines based on the uncertainty principle of game
theory.

The on-demand strategies for resources allocation proposed
by Shanmuganathan et al. and Chen et al. [13], [15] take into
account the workload at the time of task arrival. Our work
differs from these approaches and the forecasting techniques
used by Cao et al. [14], as we rely on pre-computed open coali-
tions that are demand-aware. The coalition formation approach
for multi-agent systems proposed by Shehory and Kraus [20]
has high communication complexity. As we check for coali-
tion feasibility based on a preference list, the communication
costs are considerably reduced. Our pre-computed coalitions
involve host machines—as compared to coalition formation
among self-interested agents that are either resource users or

companies owning resources on the grid [21], [22]. Coali-
tions among cloud providers [23], [24] have been called cloud
federations. The dynamics of these coalitions are different,
because the agents are inherently self-interested due to different
ownerships, and make their own decisions according to their
budgets, capabilities, goals, etc. Optimal coalition formation
under uncertain resource consumption by tasks is planned by
an MDP by Hosam and Khaldoun [30]. It is known that exact
solutions are intractable for large MDPs [31]. Our concern
about uncertainty is which VMs will be required at what time,
i.e., which task arrives when. Kraus et al. [29] developed a
protocol and employed a heuristic-based approach for task
domains, where each task should necessarily be present in a
different agent. The uncertainty there is about the capabilities of
other agents. In our case, since we consider machine coalitions
for specific VM configurations on the cloud, not necessarily
across providers, the machines know of the others’ capabilities.

It may be noted that the problem of resource allocation in
cloud computing that we address in this paper is very different
from that of resource procurement [19]. The problem of alloca-
tion has to do with the cloud vendor or provider choosing what
resources to devote to which purposes in anticipation of possi-
ble demands from cloud users, whereas the problem of procure-
ment has to do with the cloud users (or brokers acting on their
behalf) choosing what cloud resources to obtain from which
cloud vendors for the best possible match to the users’ needs.

III. BACKGROUND

A. Coalition Formation

As previously mentioned, coalition formation by agents oc-
curs in systems with multiple agents which must cooperate to
get a multitude of tasks done. Agents cooperate in a coalition,
as a single agent may not have all the capabilities needed to
execute a task. A typical multi-agent system can be formulated
with the following specifications (see Table II for notation).

1) Agents: There is a set of n agents, H = {H1, . . . ,
Hn}. Each agent Hi has a capabilities vector, BHi

=
{bi1, . . . , bik}. The capabilities vector for an agent mea-
sures its resource capacity.

2) Tasks: There is a set of m tasks, G = {G1, . . . ,
Gm}. Each task Gj has a necessities vector, NGj

=

{dj1, . . . , d
j
k}. The necessities vector for a task specifies

its minimum resource requirements.
3) Payoffs

a) Task payoff: Each task Gj is associated with a payoff,
PGj

, based on the resources it requires. A task requir-
ing a higher necessity set has a higher payoff. Thus

PGj
∝ NGj

. (1)

b) Agent payoff: Each agent Hi receives a payoff for
being a part of coalition Cl that services task Gj . The
agents are rewarded payoffs based on their contribu-
tions to any task assigned to the coalition they are part
of

P(Hi, Cl, Gj) ∝ 〈BHi
, PGj

〉. (2)

640 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

TABLE II
NOTATION

c) Expected payoff: Each Hi calculates its expected pay-
off E(Cl, Hi) for being part of coalition Cl. This is
done to form a preference list of the coalitions that it
can be part of.

4) Preference list computation: A preference list is cre-
ated by solving instances of two-player zero-sum games
wherein each agent is a player and the central authority
that allocates the tasks, which we call the task allocator
[8], is the other player. The game specifications are as
follows.
a) Strategies for the agent: the different possible coali-

tions that it can be part of.
b) Strategies for the task allocator: the different tasks.
c) Payoff matrix, A = (al,j): The rows correspond to the

strategies (coalitions) of the agent, and the columns
correspond to the strategies (tasks) of the task alloca-
tor; (al,j) is the payoff that the agent receives from the
task allocator, if the agent chooses coalition Cl and the
authority chooses task Gj .

d) Objective: The game progresses as the agent tries to
maximize the minimum payoff it can obtain from the
task allocator, and the allocator tries to minimize the
maximum payoff it has to pay to the agent.

B. The Uncertainty Principle of Game Theory

The game-theoretic analog of Heisenberg’s well-known un-
certainty principle [32] is a lower bound on the entropy of
optimal strategies of zero-sum games [4]. In zero-sum games,
the lower bound for randomness of optimal solutions is given
in terms of the value δ of the commutator of two nonlinear
operators, namely, maximum and minimum, on the payoff
matrix. This is the uncertainty principle of game theory. The
commutator gives the extent to which the min and max opera-
tors can be commutative. This lower bound is determined by a
single parameter δ of the game, as given by

δ =
(
min
z

max
w

−max
w

min
z

)
aw,z. (3)

Theorem 1 (Székely and Rizzo [4]): If G(δ) denotes the class
of two-player, finite, zero-sum games with commutator coeffi-
cient δ, and h(δ) is the entropy of the two-point distribution

(1/(1 + δ), δ/(1 + δ)), then a lower bound for entropies of
optimal solutions (x∗, y∗) of games in G(δ) is given by

min (H(x∗), H(y∗)) ≥ h(δ). (4)

Moreover, h(δ) is the greatest lower bound. �
When δ > 0, the players realize that a mixed strategy is

optimal but cannot be sure of the optimal mixed strategy
chosen by the other player. Hence, each player tries to find
a probability distribution that approximates the opponent’s
actions. The entropy is small when the probability mass is very
concentrated on a few strategies. Among mixed strategies to be
analyzed, the easiest ones are those of a two-point distribution.
Minimum entropy corresponds to the entropy h(δ) of the two-
point distribution (1/(1 + δ), δ/(1 + δ)). This means that the
optimal mixed strategy achieves the minimum entropy when the
strategy is supported on exactly two points with probabilities
(1/(1 + δ), δ/(1 + δ)) [4].

C. Application of the Uncertainty Principle of Game Theory
to Coalition Formation

We find that the uncertainty principle of game theory can be
applied to find the good strategies reasonably quickly [5], [8].
The game is formulated to be played between each agent and
the allocator. It is not a single game but multiple games (one in-
stance of the game is between an agent and the allocator). Each
agent–allocator combination can form their payoff matrix, as it
is assumed that they know the calculation of expected payoff
for a coalition that serves a particular task. Hence, each agent
(assumed to be selfish) tries to make the allocator pay and forms
its own list of coalitions. A coalition becomes feasible only if
all its members are interested. The coalition list computation
is essentially decentralized and happens at each agent, and the
coalition is finally formulated after the feasibility check.

When δ is equal to 0, a saddle point exists, and the optimal
strategy is a pure strategy. In such games, the solution may be
easily found by repeated application of iterative dominance.
When δ is greater than 0, a mixed strategy is optimal. Since
the optimal strategy of the other player is unknown, the player
has to opt for a probability distribution over the pure strategies
(i.e., it must choose a mixed strategy). In general, computation
of optimal strategies is expensive when the number of strategies
available to a player is large and the computation is time-bound.
In such situations, an alternative solution strategy is proposed
[4]. The solution obtained by that mechanism is optimal, in
the sense that the expected payoff is guaranteed to be above
a certain lower bound (refer Theorem 1).

At each instance of the game, when δ > 0, the two coalitions
with probabilities (1/(1 + δ), δ/(1 + δ)) are removed from the
list of possible coalitions for the agent and are added to its
preference list. In the next iteration, the game is played with
the remaining coalitions, and the next two best coalitions are
found. This process is repeated until all the possible coalitions
are listed out in the order of preference.

The purpose of applying Theorem 1 for forming a preference
list, rather than a near-optimal mixed strategy, is that there
are multiple coalitions computable for an agent. However, a

PILLAI AND RAO: RESOURCE ALLOCATION IN CLOUD COMPUTING 641

computed coalition becomes feasible only by the informed
consent of all the constituent agents. Hence, the near-optimal
coalition according to an agent may not be favored by another
member. By creating a preference list, the host machine can
now check for the feasibility of the next coalition in the list,
rather than doing the full computation yet again.

By iteratively applying this principle over the payoff matrix
after removing the strategy solutions from the previous itera-
tion, we order the near-optimal strategies. This is similar to the
ordering in the Gale–Shapley algorithm for the stable marriage
problem [33]. We employ it for the ranking of coalitions for an
agent. In view of the non-determinism of the types of tasks to be
served and the machines available, it is safe to assume (without
loss of generality) that saddle points rarely occur with random
payoff matrices [4]. It has been also noted that the application
of the uncertainty principle has resulted in errors as low as 0.1
in 98% of the games which involved random matrices [4].

We summarize the discussion and notation based on the
above as follows [5].

1) An agent Hi prefers a coalition Ce over Cf if
E(Ce, Hi) > E(Cf , Hi).

2) A coalition Cl is said to be the best coalition for an agent
if, ∀Cw, E(Cl, Hi) > E(Cw, Hi), l �= w, where Cw is a
possible coalition for Hi excluding Cl.

3) An agent Hi is said to be part of a disinterested coali-
tion Ce if E(Cf , Hi) > E(Ce, Hi), where Cf is another
possible coalition.

4) The system is stable when there are no disinterested
coalitions.

5) The capability of a coalition Cl is the sum total of the
capabilities of the agents that are part of the coalition,
i.e., DCl

=
∑

∀Hi∈Cl
BHi

.
6) If a coalition Cl is able to satisfy the necessities of task

Gj , we denote this by NGj

 DCl

(see Algorithm 3).

IV. SYSTEM MODEL

We make the following assumptions as part of the model [5].

1) The original capabilities of the machines are known.
2) A coalition is feasible only if all the machines involved in

it agree to cooperate.
3) Machines can calculate the expected payoffs correctly.
4) Machines remain in the coalition until their allotted task

is completed.
5) The possible VMs that need to be hosted are known

beforehand. These VMs should be up and running on the
host machines. The exact task information is available
only at the time of client request.

A. The Knowledge Base

The knowledge base at the cloud is like a data bank, which is
accessible to all the machines in the cloud and the task allocator.
The functionality of the knowledge base can be enumerated as
follows.

1) Maintaining a list of possible VMs: We assume that the
cloud has knowledge of the type of VM requests that it

has to handle. Each VMq is a tuple with configuration
specifications as

VMq = 〈size_VMq, core_VMq,memory_VMq,

storage_VMq, host-os_VMq〉.

The specifications include the size of VMq (size_VMq),
the number of cores needed for VMq (core_VMq), the
amount of memory needed (memory_VMq), the disk
space needed (storage_VMq), and the host operating
system (OS) needed on the physical machine running
VMq . The values taken by these parameters are specified
in Table I.

2) Listing capabilities of host machines: Each machine
HMp on the cloud has a set of capabilities, i.e.,

HMp = 〈ID, rack_id, core_HMp,memory_HMp,

storage_HMp, host-os_HMp.〉

The specifications include the rack (rack_id) in which
HMp is placed, the number of cores (core_HMp), the
amount of memory (memory_HMp), the disk space
(storage_HMp), and the host OS running.

This knowledge base forces an information symmetry across
the host machines and the allocator. Information transfer (or
status updates) from the host machines to the allocator is
required. However, large data center and cloud systems already
have significant monitoring tools that provide near-real-time
updates of various systems to their controllers [34].

B. Resource Allocation Through Coalition Formation

We assume that s VM configurations are available with the
cloud service provider. A typical IaaS client request for VMs
with Microsoft Azure [7] has the following form:

R = 〈no_VM1, . . . , no_VMs〉

where the number of each VM instance needed by the particular
request is specified.

The payoff associated with a VM request R is calculated as
P (R) and is a function of the number of cores core_VMq and
the disk space storage_VMq since the payoff for VMs scales
with the resources needed. We denote this by

P (R) ∝ 〈core_VMq, storage_VMq〉. (5)

The payoff rewarded to a host machine HMp for servicing
a request R as part of a coalition Cl is, in turn, a function of
both the payoff for the particular request and the machine’s
contributions, i.e.,

P(HMp, Cl,R) ∝ 〈HMp, P (R)〉 . (6)

The mapping between coalition formation and resource al-
location on the cloud is depicted in Table III. The two players
involved in the game formulation are the task allocator and the
host machine. Each host machine chooses a coalition (strategy)
from a set of feasible coalitions (strategies). Each coalition
has a different payoff associated with it. The set of computed

642 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

TABLE III
COALITION FORMATION IN RESOURCE ALLOCATION

TABLE IV
SAMPLE PAYOFF MATRIX

coalitions for each host machine has all coalitions that it may
be part of. The payoff is calculated by considering the task
allocated to the coalition. The opponent player or the task
allocator has a strategy set consisting of the set of all possible
VM configurations that may be requested. IaaS systems follow
a utility-based pricing of resources [2], [7]—the higher the
quantity and quality of resources, the greater the price billed
from the user. Hence, the cloud provider’s and thereby the
allocator’s choice would be to employ a suitable coalition with
the largest capability. The payoff calculation depends on the
capabilities of the coalition and the task, which means that the
coalition that is able to satisfy a task with the least wastage
of resources is entitled to a higher payoff than a coalition
that has higher capabilities than that demanded by the task. In
effect, this is a win-win situation wherein the allocator plays a
min–max game and the host machine plays a max–min game.
The host machines prefer to be in their favored coalitions and
to serve requests that give maximum payoffs. The allocator
tries to forcibly allocate tasks to machines irrespective of their
preferred coalitions. Thereby, it is a two-player zero-sum game,
as the gain received by a host machine is equal to the payoff
given by the allocator. In order to bring in optimization, the
request has to be serviced with the minimum wastage of re-
sources. This is done by making the host machines prioritize
their coalitions. The solution of the two-player zero-sum game
is the near-optimal coalition for the host machine.

As depicted in the sample payoff matrix (see Table IV), each
entry corresponds to the payoff to be given by the task allocator.
Ml,j represents the payoff by the task allocator if the coalition
chosen by the host machine is Cl and the task performed by
the coalition is Gj . The host machines try to maximize their
minimum payoffs, whereas the allocator attempts the inverse.

Solving for optimal coalitions may be done by integer pro-
gramming. The computational infeasibility of this is on account
of the fact that, as the number of strategies (both coalitions for
the host machine and tasks for the allocator) increases, finding
optimal coalitions gets out of bounds [4]. It can be inferred that,
as host machines are allowed to form coalitions without any
prior constraints on the size of or participants in a coalition, the
search space for each agent exponentially grows, the possible

TABLE V
EXAMPLE: PAYOFF MATRIX

number of coalitions being 2n for n agents. The communication
overhead and computation costs in a coalition also increase with
its size. Unless a heuristic is applied to adjust constraints and
hence simplify the problem, solving the game for finding the
optimal strategy seems infeasible. Hence, it is justifiable that,
although our approach gives near-optimal strategies, it is of
lower complexity and does not involve heuristics.

Example: Payoff Matrix Calculation: Consider a set-
ting with five machines, namely, HMI , HMII , HMIII ,
HMIV , and HMV , with BHMI

= 1, BHMII
= 2, BHMIII

=
3, BHMIV

= 4, and BHMV
= 5 cores, respectively. Let

the tasks that these machines have to accomplish re-
quire NG1

= 4, NG2
= 5, and NG2

= 6 core VMs. Origi-
nally, BHMp

and NGj
are vectors; however, for the sake

of simplicity of illustration, we consider them as ordi-
nal numbers indicating the number of cores. The candi-
date coalitions for host machine HMI are C(HMI ,HMII),
C(HMI ,HIII), C(HMI ,HMIV), and C(HMI ,HMV) with capabili-
ties DC(HMI ,HMII)

= 3, DC(HMI ,HMIII)
= 4, DC(HMI ,HMIV)

=
5, and DC(HMI ,HMV)

= 6. The payoff to HMI for being a
member of the candidate coalitions is calculated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(DCl
−NGj

)× BHMp

DCl

if DCl
< NGj

c× BHMp

DCl

if DCl
= NGj[

c− (DCl
−NGj

)
]
× BHMp

DCl

if DCl
> NGj

where DCl
and NGj

denote coalition Cl’s resource capability
and task Gj’s resource necessity, respectively. BHMp

represents
the capability of a host machine HMp. The resultant payoff ma-
trix when the scaling factor c is taken as NGj

+ 1 is depicted in
Table V. δ is computed from (3) as (4/6) > 0. Hence, the near-
optimal two-point strategy is supported by ((8/25), (17/25))
as given by Theorem 1. Reducing the payoff matrix to the
form described in [4], the strategies with minimum entropy and
nearest to the calculated values are C(HMI ,HMIV) for G1 and
C(HMI ,HMV) for G2.

C. Optimization Problem

The resource allocation strategy for the cloud aims to opti-
mize the usage of the different resources. It is an optimization
problem with the following:

• Job completion time: Allocating resources to minimize
the total execution time results in good utilization of
resources. It maps to the monetary cost of executing the
task on an IaaS system [28]. Minimum execution time
means lower payment by the client for engaging the VM.
It also means that more VM requests can be serviced.

PILLAI AND RAO: RESOURCE ALLOCATION IN CLOUD COMPUTING 643

• Constraints

1) Task characteristics: We assume that approximate ex-
ecution times of the different VM request types are avail-
able beforehand along with their resource requirements.

2) Resource availability: The number of simultaneous
VMs on a particular machine that may be allocated
to tasks is known, as is the resource capability of
each machine. During task allocation, open coalitions
that are not already servicing other tasks should be
preferred to ensure execution time reduction.

3) Request satisfaction: Allocating resources to in-
crease the number of client requests satisfied results
in not only efficient resource division among the cur-
rent requests, but also reduced number of idle host
machines. This results in lowered resource wastage and
better profit to the IaaS provider, as the number of client
requests that can be billed increases.

4) Topology: It is obvious that VMs within the same
host machine need the least communication time, fol-
lowed by those on host machines in the same rack, and
then by machines in different racks. If the topology
of the cloud is taken into consideration while forming
coalitions, higher payoffs should be given to coalitions
involving machines with lower communication costs,
i.e., coalitions with the least internal communication
costs should be preferred for task allocation.

D. System Mechanism

Host machines are categorized into those that are i) part of a
coalition; ii) ready to be in a coalition; and iii) unwilling to be
in a coalition.

The resource allocation mechanism in the cloud is pictorially
represented in Fig. 1.

The task allocator and the host machines have access to the
knowledge base, which has the exhaustive list of the VM types
that may be requested and the host machine configurations. This
information is used in computing the expected payoff matrix.
The calculation of the expected payoff assumes a common user
priority for all tasks, as this precedes the arrival of the actual
requests. The tasks, however, have different overall payoffs,
as the resources they require are different. By solving their
respective zero-sum games, host machines arrange themselves
in open coalitions. Open coalitions are those coalitions that are
not assigned any user request as yet, but are ready for service.

The arrival pattern of tasks is non-deterministic, and that is
essentially the uncertainty involved. While pre-computing open
coalitions, tasks are not considered to be held in a reserve.
In commercial cloud platforms (e.g., Microsoft Azure that
we have considered), the configurations of VMs provided are
already available even before the exact arrival of the task. A task
requests a certain number of VMs of available configurations.
It is against the already known VM configurations that open
coalitions are pre-computed. As and when the task arrives, the
request per VM can be satisfied by an open coalition.

The formation of open coalitions has two major steps [5].

1) Calculation of coalition preference: If t is the number of
host machines that are ready, there are

(
t−1
r−1

)
possibilities

Fig. 1. Resource allocation.

for a host machine to choose its partners in a coalition of
size r. This is followed by the calculation of the expected
payoff for each potential coalition, for each of the prob-
able tasks involving specific VMs. The payoff calculated
from the preceding step is used in building a preference
list, which specifies the order of the coalitions favored
by the host machine. The preference list is populated by
finding the two high-payoff coalitions in each iteration of
the two-player zero-sum game between the host machine
and the task allocator using the uncertainty principle of
game theory.

2) Negotiation step: The host machines use their preference
lists to check for the feasibility of coalitions in that order.
A coalition Cl is feasible if the host machines forming
that coalition agree to be part of it. If a host machine
HMp’s preferred coalition is not agreeable to the other
machines in it, HMp takes up its next preferred coalition
from its preference list for feasibility check. On passing
a feasibility check, Cl becomes an open coalition, with
HMp and the other machines for its members. Once a
machine reaches the maximum number of open coalitions
it can be part of, it is removed from the list of ready
machines. The other machines in the ready list remove
from their preference lists those coalitions involving the
machines that have reached their maximum number of
concurrent open coalitions. Once an open coalition is
assigned a task, the host machines remain part of the
coalition until the task is complete. Coalitions are of
fixed sizes once formed. If, on the arrival of a request
none of the existing open coalitions have the capabilities
for executing the task involved, the allocator assigns a
host machine or a group of host machines ready to be
a part of a coalition to serve the request. The allocator
then has to ensure that the necessities of a task are
met while allocating forcibly to machines or a group of
machines. After the completion of a task, the coalition
is dissolved, and the machines in that coalition update
their concurrent coalitions list. If they were previously at
their maximum capability, they become available after the
coalition dissolution.

644 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

TABLE VI
DATA STRUCTURES IN ALGORITHMS

V. ALGORITHMS

We modify and use the algorithms (Algorithms 1, 2, and
3) from our earlier work [5] to perform resource allocation
on the cloud. The algorithms are for open coalition formation,
coalition dissolution, and task allocation (see Table VI for the
data structures of the algorithms). The proofs of correctness can
be found in our previous paper [5].

1) Open Coalition Formation Algorithm: The Open Coali-
tion Formation Algorithm (Algorithm 1) can be broken down
into two major steps. The first step is the calculation of coalition
preference. This step includes the evaluation of all the feasible
coalitions for a host machine and creating a preference list on
them. The complexity lies in the fact that each of the host
machines might have different preferences based on the ex-
pected payoffs, and hence, disinterested coalitions may occur.
This is avoided by the second step called the negotiation step,
wherein the machines exchange mutual information with regard
to the feasibility of the coalition. With this, the formation of
only stable coalitions is ensured. If a host becomes part of
multiple coalitions, it is ensured that the one offering lesser
payoff is formed only after the one that offers a higher payoff
is already formed. From our previous paper [5], the Open
Coalition Formation Algorithm has been modified to allow host
machines to participate in more than a single coalition.

Algorithm 1 first computes the set of machines available
to be part of coalition, in lines 2–4. In line 6, a particular
host machine’s set of feasible coalitions is populated. Line 7
computes the payoff the host machine receives for a particular
coalition, and based on this, the machine’s preference list of
coalitions is populated in line 8. Line 15 is the negotiation
step between the machines where the feasibility of the coalition
is checked. It is checked whether it is possible to be part of
a best possible coalition. Lines 17–22 form the coalition. If
the number of coalitions that an agent is part of reaches the
maximum capacity, lines 23–26 remove that machine from the

list of available hosts. The preference list for the available
host machines is updated in lines 27 and 28 by removing the
coalitions involving unavailable hosts.

PILLAI AND RAO: RESOURCE ALLOCATION IN CLOUD COMPUTING 645

Since the algorithm is meant for a cloud, which is most
often a distributed environment, the complexity of Algorithm
1 is calculated based on the number of messages that are sent
during the execution. Algorithm 1 computes all the feasible
coalitions for each host machine HMp. In order to avoid
increased communication cost and to maximize the payoff for
each host machine, it would be preferable to limit the number of
members in a coalition. For a coalition of size r and machines
being allowed to be part of a single open coalition at a time,
the number of messages that are sent in the system overall is
r ×

∑(t/r)−1
u=0

(
t−u·r
r−1

)
[5]. Considering that an agent can be part

of more than one coalition in the modified approach, we still see
that, after each iteration, the number of host machines yet to join
an open coalition decreases monotonically. If we consider, on
an average, h as the number of host machines that are removed
from the set of available machines in each round, then the
number of iterations for the algorithm is (t/h) [5]. In every
successive rounds, the algorithm chooses r − 1 host machines
from t− h− 1. The feasibility check of each coalition would
require r − 1 messages to be sent. If the number of open
coalitions that a host machine can be part of simultaneously
is v, then the total number of messages sent in the system sums
to v × r ×

∑(t/h)−1
u=0

(
t−u·h
r−1

)
.

2) Coalition Dissolving Algorithm: Algorithm 2 for dis-
solving a coalition takes in the coalition to be dissolved and
the task being serviced by it as inputs. The algorithm checks
for the completion of the task. If the task under consideration is
completed, the members of the coalition are added to the set of
available agents.

If the task serviced by the coalition is found to be complete,
the members of the coalition are added to the set of machines
that are available in line 4. The released capabilities of the
host machine is updated in line 5. The statuses of the member
host machines are updated according to the current number of
coalitions they are part of. If it is zero, the status is changed to
available, else it is changed to open_coalition in lines 6–9. The
current number of coalitions for the members is updated in line
10, the coalition list is updated in line 11, and the coalition itself
is dissolved in line 12.

3) Task Allocation Algorithm: Algorithm 3 for task alloca-
tion takes in the task Gj to be allocated and the set of coalitions
(coalitions_set) as inputs. If the necessities for the task are

found in the capability vector of an OPEN coalition Cl, i.e.,
NGj

 DCl
, then the task is allocated to the coalition in lines

6–7. The status of the coalition that is allotted the task is
changed to ENGAGED in line 8. The capability vectors of the
member host machines are updated in lines 9–10. If none of the
open coalitions satisfy the necessity vector for the task, then the
task allocator is asked to forcibly allocate the task to a group of
host machines in lines 11–12.

VI. EXPERIMENTS

A. Setup

The experimental setup is similar to that of Mashayekhy and
Grosu [12] and consists of the following specifications.

1) The four types of VM instances are specified in Table I.
The instance types and pricing are similar to the ones used
by Microsoft Azure [7].

2) Each task specifies the number of instances of each VM
type it requires, i.e., R = 〈no_VM1, . . . , no_VMs〉, rep-
resenting the number of small, medium, large, and extra
large configurations of VMs, respectively.

3) We consider four different types of task requests, namely,
(10, 0, 0, 0), (10, 10, 0, 0), (10, 10, 10, 0), and (10, 10,
10, 10), with the first number in each task request in-
dicating the number of small VMs needed, the second
indicating the number of medium VMs needed, and so on.
The numbers of these requests were varied during runs,
and the performances were compared as the number of
tasks increased.

4) Three different task sets are considered: 1) Task set 1-
one instance each of the four types of requests (total of
4 task requests); 2) Task set 2-two instances each of the
four types of requests (total of eight task requests); and
3) Task set 3-three instances each of the four types of
requests (total of 12 task requests).

5) The results are an average of 20 runs of the experiments.
6) The results obtained are based on simulations coded

in Java run on the Java Run-Time environment on a
3.00 GHz Intel quad-core personal computer with
8 GB RAM.

7) The virtual topology consists of a total 400 machines,
with 100 machines of each configuration. VMs of iden-
tical configurations were adjacently placed. The host

646 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

Fig. 2. Time for task allocation for the different strategies.

machine configurations are specified based on their num-
ber of cores and hard disk storage. The configurations
considered are as follows: 1) one core, 125-GB disk
storage; 2) two cores, 250-GB storage; 3) four cores,
500-GB storage; and 4) eight cores, 1000-GB storage.

8) Round Robin methods have been found useful for appli-
cations such as Hadoop [35]. The performance of our re-
source allocation algorithm was compared with common
cloud resource allocation strategies [28], which include
the following:
a) RR-R: allocation in a round robin (RR) manner across

the racks (R).
b) RR-S: allocation in a round robin (RR) manner across

the host machines (S). This is the default policy used
by Eucalyptus [36] (cf. [37]).

c) H-1: hybrid policy combining RR-S and RR-R pre-
ferring host machines in a rack but only to select a
maximum of 20 host machines per rack.

d) H-2: similar policy as H1 but to select only a maxi-
mum of 10 servers per rack.

B. Results

Through our experiments, we compared the different re-
source allocation strategies listed above with our resource al-
location by coalition formation (denoted by CF in the graphs)
based on the following criteria.

1) Task allocation time: The task allocation time is the
duration between the submission of a request at the cloud
service provider and the allocation of a single/group of
machines to host the corresponding VMs. The results
of the comparison on task allocation time for the above
listed strategies are depicted in Fig. 2.

2) Resource wastage: The number of cores for each of the
strategies was compared for the task sets, the results of
which have been depicted in Fig. 3. This gives a mea-
sure of the resource wastage with the normal allocation
strategies.

The amount of storage wasted in GB for each of
the strategies was compared, the results of which have
been depicted in Fig. 4. This gives yet another mea-
sure of the resource wastage with the normal allocation
strategies.

Fig. 3. Core wastage for the different strategies.

Fig. 4. Storage wastage for the different strategies.

Fig. 5. Communication cost for the different strategies.

3) Communication cost: The communication cost is the
cost of establishing communication among the members
of a coalition. It is directly proportional to the num-
ber of coalition members and their placement on the
racks. Closely-placed machines have lower communica-
tion costs. The logarithm to the base 10 of the communi-
cation cost between host machines in coalitions is plotted,
as depicted in Fig. 5.

4) Request Satisfaction
a) The number of unsuccessful VM assignments for each

of the strategies was compared for Task sets 1–3, as
shown in Fig. 6. This indicates that the lower task
allocation time for certain strategies does not always
mean that all the requested VMs have been success-
fully assigned.

PILLAI AND RAO: RESOURCE ALLOCATION IN CLOUD COMPUTING 647

Fig. 6. Unassigned VMs for different strategies for task sets.

C. Discussion

From the results we listed in the previous section, we find
that our resource allocation mechanism fares better than the
resource allocation strategies commonly used in commercial
IaaS clouds. The values for the graphs for resource wastage
(core and storage) were log-normalized (log10) in order to scale
the values of the resource allocation strategies. The results lead
us to deduce the following points.

1) Task allocation time remains mostly constant for our
resource allocation by coalition-formation approach. This
can be attributed to the fact that open coalitions are
formed even before the arrival of the actual requests. All
that needs to be done is a lookup in order to assign the
coalition with the least resource wastage to the request
when it arrives.

2) Lower task allocation time does not always indicate suc-
cessful VM assignments; it can be also caused by the
inability to accommodate VMs using the remaining host
machines based on that particular allocation strategy, as
is evident from the cases of policies H1 and H2.

3) Resource wastage, whether with respect to the number
of cores or the storage, remains lowest for our alloca-
tion strategy. This is also due to pre-configuration of
coalitions, which can be assigned for tasks after ensuring
minimum wastage.

4) As the number of task requests increases, the number of
VMs that are successfully assigned gets rapidly lower
with the H1 policy. For the other policies, the rate,
although less dramatic, is higher than in our allocation
strategy.

5) Since our allocation strategy is topology-aware, it assigns
a higher payoff for VM coalitions that are closely-placed.
This results in reduced communication cost and resource
wastage. In Fig. 5, the hybrid strategies have lower costs,
on account of incomplete request satisfaction resulting in
lower communication.

VII. CONCLUSION

Resource allocation on the cloud aims at avoiding under-
utilization of resources. Through this work, we have shown
the use of the uncertainty principle of game theory to model
coalition formation among machines on the cloud. This is done
to satisfy requests needing capabilities beyond that of a single
machine. Virtualization of the required resources is facilitated
by forming coalitions of host machines. For doing so, we devise

a mechanism for resource allocation for tasks whose pattern
of arrival is unknown. The advantage of our approach is that,
by solving the optimization problem of coalition formation, we
avoid the complexities of integer programming. In addition,
our resource allocation mechanism, when deployed, is found
to perform better with respect to lower task allocation time,
lower resource wastage, and higher request satisfaction. As
cloud systems are large, themselves costing billions of dollars,
and handle requests costing tens of billions more, we believe
that these are very significant real-world advantages.

REFERENCES

[1] Amazon elastic compute cloud, Jun. 2013. [Online]. Available: http://aws.
amazon.com/ec2/

[2] IBM Cloud Computing: Infrastructure as a Service, Jun. 2013. [Online].
Available: http://www.ibm.com/cloud-computing/us/en/iaas.html

[3] T. W. Sandholm and V. R. Lesser, “Coalitions among computationally
bounded agents,” Artif. Intell., vol. 94, no. 1/2, pp. 99–137, Jul. 1997.

[4] G. Székely and M. L. Rizzo, “The uncertainty principle of game theory,”
Amer. Math. Mon., vol. 114, no. 8, pp. 688–702, Oct. 2007.

[5] P. S. Pillai and S. Rao, “A resource allocation mechanism using coalition
formation and the uncertainty principle of game theory,” in Proc. 7th
Annu. IEEE Int. SysCon, Orlando, FL, USA, Apr. 2013, pp. 178–184.

[6] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing clus-
ters,” in Proc. 22d ACM SOSP, 2009, pp. 261–276.

[7] Windows Azure, Jun. 2013. [Online]. Available: http://www.
windowsazure.com

[8] P. K. Enumula, “Coalition formation in multi-agent systems with uncer-
tain task information,” M.S. thesis, Int. Inst. Inf. Technol. Bangalore,
Bangalore, India, Jun. 2008.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[10] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch,
“Power management of online data-intensive services,” in Proc. 38th
ACM ISCA, 2011, pp. 319–330.

[11] G. E. Goncalves, P. T. Endo, and T. Damasceno, “Resource allocation in
clouds: Concepts, tools, and research challenges,” in Proc. 29th Simpósio
Brasileiro Redes Comput., 2011, pp. 197–240.

[12] L. Mashayekhy and D. Grosu, “A coalitional game-based mechanism
for forming cloud federations,” in Proc. IEEE/ACM 5th Int. Conf. UCC,
Chicago, IL, USA, 2012, pp. 223–227.

[13] G. Shanmuganathan, A. Gulati, and P. Varman, “Defragmenting the cloud
using demand-based resource allocation,” in Proc. ACM SIGMETRICS
Int. Conf. Meas. Model. Comput. Syst., 2013, pp. 67–80.

[14] J. Cao, Y. Wu, and M. Li, “Energy efficient allocation of virtual machines
in cloud computing environments based on demand forecast,” in Proc. 7th
Int. Conf. Adv. GPC, 2012, pp. 137–151, Springer-Verlag.

[15] X. Chen, J. Zhang, J. Li, and X. Li, “Resource virtualization methodology
for on-demand allocation in cloud computing systems,” Serv. Oriented
Comput. Appl., vol. 7, no. 2, pp. 77–100, Jun. 2013.

[16] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason,
“Auction protocols for decentralized scheduling,” Games Econ. Behav.,
vol. 35, no. 1/2, pp. 271–303, Apr. 2001.

[17] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed re-
source management for high throughput computing,” in Proc. 7th Int.
Symp. HPDC, 1998, pp. 28–31.

[18] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” J. Su-
percomput., vol. 54, no. 2, pp. 252–269, Nov. 2010.

[19] A. S. Prasad and S. Rao, “A mechanism design approach to resource
procurement in cloud computing,” IEEE Trans. Comput., vol. 63, no. 1,
pp. 17–30, Jan. 2014.

[20] O. Shehory and S. Kraus, “Methods for task allocation via agent coalition
formation,” Artif. Intell., vol. 101, no. 1/2, pp. 165–200, May 1998.

[21] L. He and T. R. Ioerger, “Forming resource-sharing coalitions: A dis-
tributed resource allocation mechanism for self-interested agents in com-
putational grids,” in Proc. 12th ACM SAC, 2005, pp. 84–91.

[22] G. Yong, Y. Li, W.-M. Zhang, J.-c. Sha, and C.-y. Wang, “Methods
for resource allocation via agent coalition formation in grid computing
systems,” in Proc. IEEE Int. Conf. Robot., Intell. Syst. Signal Process.,
Oct. 2003, vol. 1, pp. 295–300.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.ibm.com/cloud-computing/us/en/iaas.html
http://www.windowsazure.com
http://www.windowsazure.com

648 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

[23] D. Niyato, A. Vasilakos, and Z. Kun, “Resource and revenue sharing
with coalition formation of cloud providers: Game theoretic approach,”
in Proc. 11th IEEE/ACM Int. Symp. CCGrid Comput., May 2011,
pp. 215–224.

[24] M. Hassan, B. Song, and E.-N. Huh, “Distributed resource allocation
games in horizontal dynamic cloud federation platform,” in Proc. 13th
IEEE Int. Conf. High Perform. Comput. Commun., 2011, pp. 822–827.

[25] W. Saad, Z. Han, M. Debbah, and A. Hjrungnes, “A distributed coalition
formation framework for fair user cooperation in wireless networks,”
IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4580–4593, Sep. 2009.

[26] L. Mashayekhy and D. Grosu, “A merge-and-split mechanism for dy-
namic virtual organization formation in grids,” in Proc. 30th IEEE Int.
Perform. Comput. Commun. Conf., 2011, pp. 1–8.

[27] O. Sonmez, H. Mohamed, and D. Epema, “Communication-aware job
placement policies for the KOALA grid scheduler,” in Proc. 2nd IEEE
Int. Conf. e-Science Grid Comput., 2006, pp. 1–8.

[28] G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz, “Topology-aware re-
source allocation for data-intensive workloads,” in Proc. 1st ACM APSys
Workshop, 2010, pp. 1–6.

[29] S. Kraus, O. Shehory, and G. Taase, “Coalition formation with uncertain
heterogeneous information,” in Proc. 2nd Int. Joint Conf. AAMAS, 2003,
pp. 1–8.

[30] H. Hosam and Z. Khaldoun, “Planning coalition formation under uncer-
tainty: Auction approach,” in Proc. Int. Conf. Inf. Commun. Technol.,
2006, vol. 2, pp. 3013–3017.

[31] A. Bai, F. Wu, and X. Chen, “Online planning for large MDPs with
MAXQ decomposition,” in Proc. 11th Int. Conf. AAMAS, Richland, SC,
USA, 2012, vol. 3, pp. 1215–1216.

[32] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretis-
chen kinematik und mechanik,” Z. Phys., vol. 43, no. 3/4, pp. 172–198,
Mar. 1927.

[33] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” Amer. Math. Mon., vol. 69, no. 1, pp. 9–15, Jan. 1962.

[34] Oracle Enterprise Manager, Strategies for scalable, smarter monitor-
ing using Oracle Enterprise Manager Cloud Control 12c, Jun. 2013.
[Online]. Available: http://www.oracle.com/technetwork/oem/sys-mgmt/
wp-em12c-monitoring-strategies-1564964.pdf

[35] D. Quan, R. Basmadjian, H. Meer, R. Lent, T. Mahmoodi, D. Sannelli,
F. Mezza, L. Telesca, and C. Dupont, “Energy efficient resource allocation
strategy for cloud data centres,” in Computer and Information Sciences
II, E. Gelenbe, R. Lent, and G. Sakellari, Eds. London: Springer-Verlag,
2012, pp. 133–141.

[36] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov, “The Eucalyptus open-source cloud-computing sys-
tem,” in Proc. 9th IEEE/ACM Int. Symp. CCGrid, 2009, pp. 124–131.

[37] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds,”
in Proc. 16th ACM Conf. CCS, 2009, pp. 199–212.

Parvathy S. Pillai (S’13) received the M.Tech.
degree in information technology from the In-
ternational Institute of Information Technology
Bangalore, Bangalore, India. She is currently work-
ing toward the Ph.D. degree in computer science
in the School of Computing, National University of
Singapore, Singapore.

Her research interests include machine learning,
data analytics, medical informatics, and cloud and
distributed systems.

Ms. Pillai is a Student Member of the IEEE Com-
puter Society and the Association for Computing Machinery.

Shrisha Rao (M’08–SM’13) received the M.S. de-
gree in logic and computation from Carnegie Mel-
lon University, Pittsburgh, PA, USA, and the Ph.D.
degree in computer science from The University of
Iowa, Iowa City, IA, USA.

He is currently an Associate Professor with the
International Institute of Information Technology
Bangalore, a graduate school of information technol-
ogy in Bangalore, India. His research interests are
in distributed computing, specifically algorithms and
approaches for concurrent and distributed systems

and include solar energy and microgrids, cloud computing, energy-aware
computing, and demand-side resource management.

Dr. Rao is a member of the IEEE Computer Society, the Association for
Computing Machinery, the American Mathematical Society, and the Computer
Society of India.

http://www.oracle.com/technetwork/oem/sys-mgmt/wp-em12c-monitoring-strategies-1564964.pdf
http://www.oracle.com/technetwork/oem/sys-mgmt/wp-em12c-monitoring-strategies-1564964.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

