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Handling Big Data Using a Data-Aware HDFS 
and Evolutionary Clustering Technique  

Mustafa Hajeer, Member, IEEE, and Dipankar Dasgupta, Fellow, IEEE 

Abstract— The increased use of cyber-enabled systems and Internet-of-Things (IoT) led to a massive amount of data with 
different structures. Most big data solutions are built on top of the Hadoop eco-system or use its distributed file system (HDFS). 
However, studies have shown inefficiency in such systems when dealing with today’s data. Some research overcame these 
problems for specific types of graph data, but today’s data are more than one type of data. Such efficiency issues lead to large-
scale problems, including larger space required in data centers, and waste in resources (like power consumption), that in turn 
lead to environmental problems (such as more carbon emission) [1], as per scholars. We propose a data-aware module for the 
Hadoop eco-system. We also propose a distributed encoding technique for Genetic Algorithms. Our framework allows Hadoop 
to manage the distribution of data and its placement based on cluster analysis of the data itself. We are able to handle a broad 
range of data types as well as optimize query time and resource usage. We performed our experiments on multiple datasets 
generated via LUBM. 

Index Terms— Clustering methods, Distributed Computing, Information Management, Optimization, Scalability 

——————————      —————————— 

1 INTRODUCTION

uilding a science out of data faces many challenges. 
One major problem is that today's data is big, dy-

namic, and heterogeneous, collected from multiple sources 
and frequently has no standard structure.   

The majority of modern data analytics, management 
tools and services are designed to use Hadoop Distributed 
File System (HDFS) as a data warehouse; sometimes these 
analytic tools use services provided by the Hadoop eco-
system for processing. From a price/performance stand-
point, Hadoop stands well.  

The flexibility Hadoop provides to scale on data man-
agement problems is the reason why users perform ineffi-
ciently as per [1]. As per Huang et al. (a) the way users add 
machines to overcome computation issues made them fo-
cus less on how their codes use resources, and (b) many 
HDFS users are convinced that it is designed for batch pro-
cessing. Hence, it’s okay to have the codes running for a 
long time in the background without even thinking about 
the resources these processes are using. 

In Bajda-Pawlikowski et al. work Hadapt [2], the authors 
gave an example of such inefficiency, and overcame it for 
structured data by a factor of 50. However, the enterprise 
data explosion is mostly semi, multi and unstructured ac-
cording to Michael Walker in the survey he referenced in 
his blog [3].  The International Data Corporation (IDC) es-
timates that the volume of digital data will grow 40 to 50 
percent per year [4]. By 2020, IDC [4] predicts the number 
will have reached 40 Zettabytes (ZB). By 2020, the world 
will generate 50 times the amount of data and 75 times the 

number of data containers [3]. There is an intense need for 
the current data analytic tools to scale on big data and pro-
cess it efficiently to utilize the resources. 

Rohloff et al. in 2011 [5] explained how to store graph 
data in Hadoop using a representation of triples. They also 
showed how to perform sub-graph pattern matching in a 
scalable fashion on graphs of data. Even though the focus 
was Semantic Web graphs, the techniques presented in the 
paper are generalizable to other types of graphs. The sys-
tem SHARD was a result of that paper. Its techniques sup-
port Hadoop with the capacity to scale sub-graph pattern 
matching. 

In 2011, the work of Huang et al. on Scalable SPARQL 
querying of large RDF graphs [1] showed an efficiency 
problem in the techniques presented by Rohloff et al. [5]. 
Huang et al. [1] introduced a factor of 1340 times less effi-
cient in Rohloff et al. [5] than other alternative techniques 
for processing sub-graph pattern matching queries within 
a Hadoop-based system. 

In some situations, Big Data solutions do not use HDFS 
as a storage. However, they use the same methodology of 
horizontal scalability. We proposed and experimented with 
solutions that work on the core HDFS and can be general-
izable in those cases. Examples of such tools that use HDFS 
as storage are Apache Spark [6] and Mesos [7]. An example 
of a system that supports Hadoop through Yarn resource 
negotiator and HDFS as a data source is HAMR [8]. Hence, 
optimizing HDFS with the proposed data-aware HDFS 
framework will lead to optimizing a large number of cur-
rent big data solutions.  

Spark [6] and Storm [9] are the colorful new Big Data 
toys. Apache Storm [9] is another big data solution that 
uses yarn to run real-time analysis on unbounded streams 
of data. Storm is building on what Hadoop did for batch 
processing. Some efforts have been made on optimizing 
Storm. An example of scheduling optimization is found in 
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[10], and extensions to Storm were proposed in [11]. Our 
focus in this study is on optimizing HDFS as a data ware-
house (where data already resides on HDFS). However, in 
some cases, Storm [9] processes streams of data and stores 
the output results for further processing on HDFS, where 
our approach facilitates the data-analytic packages around 
Hadoop. 

As concerns about semi/multi/unstructured data 
growth and the ability to process such data efficiently be-
came a lead concern, our primary goal aimed at improving 
the Hadoop distributed file system (HDFS) efficiency to 
handle modern data and to improve utilization of HW re-
sources. Even though techniques in SHARD [5] and Scala-
ble SPARQL [1] are generalizable, there are some limita-
tions on how to deal with modern data. Furthermore, there 
are other limitations on how to handle the stream of dy-
namic changes that occur in the data. One may add to these 
limitations the scalability and storage usage of the cluster-
ing and placement algorithm that was used in such work, 
as discussed in Hajeer et al. [12]. 

We transformed the data and stored it in graph-based 
scalable stores to give it a sense of structure and to be able 
to stream changes, constructing vertex-to-vertex triples for 
data points, then adding cluster affiliation data to these tri-
ples to form quadruples as described in the architecture 
section. These techniques allowed us to (1) collect data 
from multiple sources and convert them into quads with a 
sense of structure for different data, (2) stream changes dy-
namically and push to the graph database, and (3) prepare 
the data for application to a new version of Hajeer et al. 
[12]. A novel encoding of chromosomes was used to handle 
the modern data clustering problem along with novel 
crossover, mutation and evaluation techniques to deliver 
the needs of the new distributed encoding technique. Later, 
we distributed the sub-graphs over HDFS based on the 
cluster affiliations to produce optimized data to query and 
process. 

Fig. 1 illustrates the contribution and modules on the 
proposed framework as follows: (1) after collecting the 
data or gathering old datasets, this module converts the 
data into the desired network graphs; (2) finding patterns 
in the graphs, the module distributes the data into the right 
data blocks; (3) distributes the blocks into the right ma-
chine accordingly; and (4) an optimized DHFS serves as a 
data source for services to execute queries and provide a 
platform to apply graph algorithms efficiently as well as 

reduce resource usage. 
To summarize the above, the proposed framework im-

proves the ability of HDFS to handle modern data by 
building data awareness modules that detect, distribute, 
and manage data over the scalable file system. Thus, the 
framework results in optimization and efficient resource 
usage of the Hadoop eco-system and other tools and ser-
vices that use HDFS as a distributed storage. 

Promising solutions in next generation analytics and 
lambda architecture have been presented in recent studies. 
Song et al. [13] reviewed the recent research in data types, 
storage models, analysis methods and application to net-
work Big Data. They also summarized the challenges and 
development of big data to predict current and future 
trends. Song et al. [13] showed how streaming and real 
time data has been accompanied by the rise in online 
streaming services, and they also showed how a system 
based on SQL called DBStream [14] relies on surveys for 
continuous data analysis.  

Studies [15], [16], [17] and [18] have focused on real time 
analysis, including efforts on lambda architecture, where 
the authors in [18] have introduced an architecture for 
time-critical Big Data systems. They showed how current 
Big Data infrastructures lack the requirement to work with 
time-critical applications and only focus on the general-
purpose applications. Basanta-Val et al. [18]  proposal ad-
dressed the issue from the perspective of the real-time sys-
tems community. Their architecture considered the time-
critical (TC) analytic as a group of TC off-line batch pro-
cessing and TC on-line stream processing. Basanta-Val et 
al. [18] transformed the general purpose Big Data stack 
into a TC Big Data stack by imposing the requirement and 
challenges of TC applications on the general-purpose 
stack. 

T-Hoarder [19] is a framework that collects tweets along 
with the associated spatiotemporal data; it also displays 
summarized and analytical information about the Twitter 
activity with respect to a certain topic or event in a web-
page. Studies in next-generation analytics and lambda ar-
chitecture along with Apache Kudu [20] and a set of stud-
ies in [21] proved to be fast and more efficient in processing 
of OLAP workloads and showed a strong performance in 
running time-critical workloads. It is worth the effort, how-
ever, to study the impact of intelligent data placement on 
such methods, especially with new technologies that can 
reduce the tradeoff of data processing, such as Intel’s first 
public demo of persistent memory in SAPPHIRE2017 [22]. 
Intel showed a new type of persistent memory with huge 
space compared to DRAM and less latency compared to 
SSDs. 

2 SCOPE OF WORK 
The current workloads running on systems (where inef-

ficiency exists) lead to requiring more space in data centers, 
and some severe environmental consequences from the in-
creased carbon emissions due to the extra power consump-
tion [1]. This can influence enterprises because of the addi-
tional power consumption and low performance for the 

Fig. 1. Computational steps of the proposed framework. 
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same hardware resources. We need systems to scale effi-
ciently.  

Graph theory is a well-studied discipline. Dr. Roy 
Marsten noted in his blog [23] that Graph Theory was a key 
approach in understanding and leveraging big data. Dr. 
Marsten focused on how Google started the graph analysis 
trend in the modern era using links between documents on 
the Web to understand their semantic context. As a result, 
“Google produced a Web search engine that massively out-
performed its established competitors and saw it jump so 
far ahead that ‘Google’ became a verb” [23]. Lots of data 
can be transformed into graphs. Conversely, many prob-
lems can be transformed into graph problems. Using graph 
theories and algorithms, most of these problems can be 
solved efficiently. 

We consider SHARD within the work of Rohloff et al. 
[5] as a win for today’s data, since we are proposing a way 
to convert various kinds of data into quadruple graphs, as 
we show in the architecture section. There are ways to scale 
graph data using distributed eco-systems, such as Hadoop, 
as we discuss in the graph databases section. Furthermore, 
a larger success occurred when Huang et al. [1] adopted 
the scholarship of Rohloff et al. [5] and optimized it to deal 
with RDF data and to overcome limitations concerning 
techniques in Rohloff et al.  

Previous efforts have been achieved for graph queries 
optimization; SHARD, [5] for example, hash-partitioned 
the data. However, hashing led to subject-to-object joins 
limitations in RDF graphs due to the need for moving in-
termediate data over the network. Another example is 
Huang et al. [1], where the objects connected to a subject 
were processed to fall into the same blocks for one or two 
hops between subject and object (one to two edges travel 
distance between subject and objects). However, space lim-
itations due to increase in data size were present. Also, 
there is a limitation of applying such an algorithm to a 
highly-connected graph. Other works like Sempala [24], or 
HIVE, PigSPARQL [25] & [26], MapMerge [27] and MAP-
SIN [28] overcame scalability to some extent. However, 
such work uses a different storage than triples and relies 
on the advantages of MR, HIVE and Impala where parti-
tioning can be optimized using our framework. 

Frameworks like Sempala, PigSPARQL, MapMerge and 
MAPSIN use different techniques to store RDF graphs. 
These frameworks transform all predicates into columns 
and create tables’ schemas accordingly, then transform tri-
ples into traditional database records. Such frameworks 
have a limitation of updating all data when new predicates 
become available along with new data, and furthermore, 
updating schemes! Thus, getting far away from the idea of 
RDF and graph-based databases, where the updates come 
with new predicates, is easier. 

2.1 Graph Databases 
The current data and modern applications have led to 

limitations in storing and processing using traditional da-
tabases, particularly using the relational model. The atten-
tion toward graph databases has increased, and the topic 
that almost died in the early nineties [29] got attention 
again. The importance of such databases came along with 

the fact that information in modern data relies on the rela-
tions, equally or even more than the information of the en-
tities sometimes [30]. Projects in different fields gave atten-
tion to such databases (e.g. Biology [31], semantic web [32], 
web mining [33] and chemistry [34]). 

As per Silberschatz et al. [35], the most general sense of 
a data model (database model) is a collection of conceptual 
tools used to model real-world entities and the relations 
among these entities. As per [35] the three components of 
this model, from a database point-of -view, are: (1) the set 
of data structure types, (2) the set of integrity rules and (3) 
the operators and interface rules. 

As per Renzo, “Graph database models can be charac-
terized as those where data structures for the schema and 
instances are modeled as graphs or generalizations of 
them, and data manipulation is expressed by graph-ori-
ented operations and type constructors” [30]. 

Many graph databases have been developed in research 
and industry fields. Some differences were found in [30] 
such as AllegroGraph, DEX, HypergraphDB, Infinite-
Graph, Neo4J and Sones. Some of them were even de-
signed to deal with triple data format as described in 
Huang et al. work [1].  

A triple or RDF store is a graph-based database for the 
storage and retrieval of triples through semantic queries. A 
triple is a data entity composed of subject-predicate-object. 
Triple stores represent information as triples and retrieve it 
via a query language; yet, there are some key differences 
from relational databases, mainly that a triple store is opti-
mized for triples. 

Triples in triple store are illustrated in Fig. 2. There has 
been some progress in research made towards clustered 
RDF database systems. Clustered RDF databases that are 
currently available, such as SHARD [5], YARS2 [36], Jena 
and Jena Elephas [37] and Virtuoso [38], generally hash 
partition triples across multiple computing nodes and par-
allelize access to these nodes at query time. 

2.2 Community Detection and Multi-Objective 
Evolutionary Algorithms 

In graph theory, clusters are often defined algorithmi-
cally when certain measures of density and sparseness are 
optimized by an algorithm, the result of which is the parti-
tioning of a network into communities [39]. In many cases, 
finding optimality of these measures is NP-hard. Usually, 
approximate but faster algorithms are used for tackling

Fig. 2. RDF triple store and its representation as a graph. 
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NP-hard problems. One of the practical meta-heuristic al-
gorithms for approximate solving of NP-hard tasks is evo-
lutionary algorithms (EA) described in [40]. The applica-
tion of GA (genetic algorithms) to community detection 
was described in [41], [42], [43], [44], [45], and [46], and the 
application of EA was described in [47] and [48]. Chang et 
al. [49] described an application of ant colony optimization 
to community detection. 

Modularity [50] is one of the most popularly used met-
rics for concluding the quality of non-overlapping graph 
clustering, particularly in the network analysis community 
[42], [43], [44], [45]. The problem of discovering a clustering 
with maximal modularity is NP-Complete [51]. As a result, 
many polynomial time heuristic algorithms have been de-
veloped [52], [53] [54] [55]. 

One popular community detection algorithm is the Gir-
van-Newman algorithm [56], where edges having maxi-
mal betweenness centrality are consecutively removed 
from the network until no edges remain.  Modularity may 
be defined as in equation (1) [57], where nc is a total number 
of communities, m is the number of edges in the graph, li is 
the total number of edges within community i, di is the sum 
of degrees of all nodes in i.  

 (1) 

As per Yi et al. [58], “In Genetic Algorithms (GA), a pop-
ulation of chromosomes, which encode candidate solu-
tions/individuals to an optimization problem, evolves to-
ward better solutions. After the solution is genetically rep-
resented in the chromosome format and the fitness func-
tions are defined, GA proceeds to initialize a population of 
solutions randomly/deterministically. Then, GA aims to 
improve it through repetitive applications of several ge-
netic operators such as selection, crossover, and mutation. 
Finally, local search and boundary search operators are ap-
plied to fine tune the results.” 

Li and Song [46] described an extended compact genetic 
algorithm. We chose our previous works using GA of [12], 
[59] and [60] for various reasons, mainly: (1) due to the 
huge search space, (2) NP-completeness of maximizing 
modularity [51], (3) being able to scale on large graphs, as 
well as (4) being able to reflect dynamic changes coming 
from different data sources. However, some changes on 
GA from [12] were necessary to adapt to our proposed 
data-aware HDFS framework. In the architecture section, 
we describe our distributed genetic algorithm where we 
developed, using open sources for multi-objective optimi-
zation and genetic algorithms, Jmetal [61] and Apache Jena 
Elephas [37] to store and manage RDF data. Later, we val-
idate it on well-known datasets and experiment with it on 
the big RDF graph generated by the Lehigh University 
Benchmark (LUBM).

2.3 Service deployments over HDFS  
As mentioned before, HDFS serves as a distributed data 

source for modern big-data solutions, such as Apache 
Spark [6], Mesos [7], HAMR [8] and hundreds of others. 
Such solutions have many deployments, mostly over 

HDFS or over a service that runs on HDFS (see Fig. 3). 
 

3 HDFS PERFORMANCE & EFFICIENCY PROBLEM 
The utilization of the Hadoop eco-system to process en-

terprise data and build applications on top of it is depend-
ent upon the enterprise use-cases and the data. Since IT BI 
teams (business intelligence) in businesses and enterprises 
configure such systems to meet their goals and roadmaps, 
they focus on the data and use-cases. 

Most enterprise data are collected for specific use cases. 
Later, these data reside on storages waiting for the BI team 
to make use of them, thus resulting in data collected from 
multiple sources having multiple structures.  

As per Huang et al. [1] and Rohloff et al. [5], the imple-
mentation of Hadoop and the services that are designed to 
run on HDFS lack optimization for graphs. Some of the 
causes for HDFS inefficiency include the following as per 
[1]: (1) the default hash partitioning provided by Hadoop 
may lead related data to end up far away physically over 
the set of computing resources, effectually resulting in a 
massive amount of data transfer between resources to fin-
ish graph operations. Thus, combining related data is a win 
as per [1]; (2) Hadoop considers the same importance for 
all data blocks and partitions, so maintaining the locality 
of inter-cluster neighbors and keeping them physically 
close-by improves efficiency, and (3) HDFS is not opti-
mized for graph data.  

Huang et al. [1] showed an efficiency problem with the 
said technique in Rohloff et al. [5] within a Hadoop-based 
system. However, the manner in which Huang et al. [1] and 
Rohloff et al. [5] worked around the problem can be gener-
alized. Since they focus on one particular file type and one 
simple clustering algorithm, we believe that this technique 
has some drawbacks when we deal with big and dynamic 
un/semi/multi-structured data. In a previous study, 
Hajeer et al. [12], we confirmed such limitations. The study 
showed how to use genetic algorithms to cluster such data. 
We used this technique in Hajeer et al. [12], Pizzuti [43] and 
[42] along with a list of other work, such as [48], [46], [62], 
and [63], after building a transformation method to convert 
desired data into graph data. The results of extending the 
work in [12] were used to generalize Huang et al. [1] and 
Rohloff et al. [5]. 

In Hadoop, the main idea is to bring the computations 
to the data; for example, MapReduce, the Map part, can 
quickly bring the computations to the container that has

 

Fig. 3. Services and applications deployments on HDFS. 
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part of the data as its resource. On the other hand, the re-
duce phase collects data from the mappers’ outputs, and in 
most cases, these data parts have to travel over the network 
to the right containers that run some specific reducers. 
Such mappers’ output usually gets collected from multiple 
mappers to each reducer. Programmers have to control 
such problems to some extent. That is why even at 
Cloudera's training for developers they tend to give a 
guideline for programmers to use mapper side joins rather 
than reducers. Cloudera's training also encourages devel-
opers to use Hive [64] query planner when possible to take 
care of such joins. Hence, we strongly believe that the Ha-
doop cluster itself should have a sense of data awareness, 
where data from mappers’ outputs for the same key should 
be in the same, or at least a nearby, machine as much as 
possible.  

Since applications and jobs are different from one use-
case to another, it is impossible to cover all cases and future 
cases. One solution to optimize such jobs is to cluster the 
data as the proposed framework does. Not all algorithms 
are covered in such cases, but most graph algorithms spe-
cifically rely on the data that are related and connected (e.g. 
graph traversing). 

4 DATA-AWARE HDFS INDICES  

4.1 Graph Transformation 
We discussed in the introduction the sources and prob-

lems of modern data. And we mentioned that data could 
come from different sources  where SN is 
source Z and Z . These various sources generate or con-
tain data with different structures, sometimes for the same 
entities but different data and different structures. 

 where  is the structure of data com-
ing from source Z and contained to the infinite superset DS 
(Structure) ⊂ ∞  

Data with the structure ∈ D were transformed into a 
graph G (V, E) as an undirected graph and with the number 
of vertices |V|=m and the number of edges |E|=n. This 
transformation is further explained in the Overall Archi-
tecture section. 

4.2 Graph Clustering  
We referred to a graph of vertices V and edges E as G (V, 

E), as a directed graph. Also, the number of vertices 
|V|=m, number of edges |E|=n and the clustering 

 as a partition of V as disjoint sets. We call C a 
clustering of G containing J clusters. The number of clus-
ters j has a minimum of j=1 when C contains only one sub-
set , and a maximum of j=m when every cluster  
contains only one vertex. We identify the cluster Cj as a sub-
graph of G. The graph  where 

 Then is the 
set of intra-cluster edges and E/E(C) is the set of inter-clus-
ter edges. The number of intra-cluster edges denoted by 
m(C) and (C) is the number of inter-cluster edges. 

In our clustering algorithm, we used modularity as a fit-
ness measure in Hajeer et al. [12]. Modularity Q is then de-
fined as the fraction of edges that fall within group 1 or 2, 
minus the expected number of edges within groups 1 and 

2 for a random graph with the same node degree distribu-
tion as the given network. Hence, the actual number of 
edges between v and w minus expected number of edges 
between them is . Modularity can be ex-
pressed in Equation (2) [57]: 

 (2) 

Notice that Equation (2) partitions the network only for 
two groups. To identify multiple communities in a graph; 
the formula has to be generalized as (3) [57]: 

 (3) 

 Where eij is the fraction of edges with one-end vertices 
in community i and the other in community j as (4) [57]: 

 (4) 

And  is the fraction of ends of edges that are attached 
to vertices in community i as in Equation (5) [57]: 

 (5) 

4.3 Graph Distribution and Assumptions 
As described previously, three major challenges faced 

HDFS optimization; two of them were about how Hadoop 
hashes and distributes the data. Our assumption and ex-
periments showed that (1) storing intra-cluster data to-
gether on the same machine and (2) storing close inter-clus-
ters data on close-by machines were a huge step toward 
optimizing HDFS. Let  a set of machines 
that represent Hadoop computing resources, where I∈ [0, 
∞) belongs to the finite natural numbers set. And 

 are machines where physical network distance be-
tween  and  are closer than and . The cluster 

 with all its vertices and edges should be placed in the 
same graph partition or at least on the same machine . 
When there is no place left on  it should be placed at least 
to  and so on; the closer the machine, the better the re-
sults. For Cj and where there are more inter-cluster 
edges than and  then Cj and  should be placed into 
the smallest possible m, Mi and  (closest machine phys-
ically) where 0≤m≤I. 

5 OVERALL ARCHITECTURE  
Our clustering framework (DEGA-Gen) is a part of the 

proposed data-awareness module running on top of the 
distributed data storage as shown in Fig. 4.  

The framework interacts with HDFS and its available 
services to provide updated clusters as data flows in 
HDFS. Our goal is to achieve optimization by placing re-
lated data together and reducing overhead on data move-
ment between hosts. Data transfer mostly happens in ag-
gregation processes or joins. 
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5.1 Building Distributed RDF Graphs 
The first step performed by the data-aware HDFS 

framework is converting datasets into a distributed RDF 
graph. This process was done using the open sources 
Apache Jena and Apache Jena Elephas. The proposed data-
aware HDFS turns the datasets into quadruples rather than 
triples; reasons for this process are explained in the Ge-
netic-Based Clustering. Unlike the widespread use of 
quadruple representation, we used the extra field in the 
quads to represent cluster affiliation of the triple rather 
than the graph membership of the quad; we called the field 
(Chromosome ID). This process leverages the usage of 
quad stores to enhance the sub-process (encoding and rep-
resentation for distributed clustering). 

Not all types of data can be transformed into graphs. 
However, Big Data is about the use-case and the data in 
some cases. This transformation is direct (SHARD), and re-
lational database records (for example) can be represented 
as an RDF graph where each attribute of each record is a 
relation between two nodes, one node represents the value 
of the key field and the other node is the value of the at-
tribute field. In other cases, (like text data), relations be-
tween data points can be defined based on the use case. 
Take natural language processing, for example, one can de-
fine relations of (word comes before) and (word comes af-
ter) for each word to build a prediction model. 

5.2 Genetic-Based Clustering 

5.2.1 Encoding & Representation 
We used the encoding from [65] to overcome the big en-

coding issues found in previous studies and listed in [65]. 
Such encoding derives from the definition of clusters. 

However, even with such encoding in [65], solutions can 
still have a very long representation as the data scales up. 
Eventually, the GA client will run out of memory handling 
solutions itself as the data scales up. Another technique we 
used to reduce the overhead of manipulating solutions was 
to store it as extra information along with graph triples on 
HDFS, by converting data points from <Node> <Predi-
cate><Node> triples, as in Rohloff et al. [5], into <Chromo-
some_part><Node><predicate> <Node> quadruples. We 
referred to <chromosome_part> as a list of solution_IDs 

that this particular node belongs to in the population. This 
encoding leads to a population of a fixed size list of Inte-
gers on the GA client side called solution_IDs. This tech-
nique allows the client to scale the clustering GA on larger 
size datasets that the HDFS can hold.  

The idea was to treat solutions as data and to inherit all 
scalability properties that apply to the graph. Thus, the 
population of a size X on the client side has a constant 
size(X) regardless of the data size. We referred to this novel 
technique as Distributed chromosomes, and as a concept, 
it is about the distribution of genes from the solutions 
along with the data. Fig. 5 explains how the graph data 
were stored in RDF format and how we performed the in-
tegration of solution encoding on RDF data. 

We used Apache Jena and Jena Alephas and modified 
these open sources to match our needs. Con-
vert_to_quads_Chromo class was developed to convert 
RDF graph Triples to Quads as in Fig. 5. This class con-
tained Mapper, reducer, combiner, and appropriate writa-
bles as well as input and output classes formatted to deal 
with RDF data. It takes each triple from each block of data 
and converts it into a quad with a random gene (part of 
solutions) that it belongs to then stores it back into HDFS. 

5.2.2 Objective Functions  
In our clustering algorithm, we maximize modularity as 

an objective in Hajeer et al. [65].  As per [57], Modularity Q 
is defined then as the fraction of edges that fall within 
group 1 or 2, minus the expected number of edges within 
groups 1 and 2 for a random graph with the same node 
degree distribution as the given network. Hence, the actual 
number of edges between v and w minus expected number 
of edges between them is Avw-(kv kw)/2m. Please refer to 
Equations 1-5 in the Data-aware HDFS Indices section. 
Note that modularity maximization is not the only objec-
tive. Another objective is to minimize the solution length. 
Considering intra-cluster edges as inter-cluster edges re-
sults in some longer solutions with no difference in modu-
larity. Hence, those solutions need to be given a smaller fit-
ness but not totally ignored (a combination with other so-
lutions may lead to a better clustering). 

Since our evaluation on the datasets used considers 
predicates and relations to work both ways (an undirected 
graph), we used modularity in Equation (3). For use cases 
where the defined relationships result in a directed graph, 
there is an extended modularity that was proposed for a 
directed graph that can be utilized. On the other hand, the 

Fig. 4. Data awareness module and Distributed evolutionary
clustering algorithm as part of Hadoop. 

Fig. 5. RDF-triples to RDF-quadruples (solution encoding). 
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clustering purpose is to find a better placement for graph 
data. Hence, considering directed graphs as undirected 
graphs while clustering does not necessarily force the user 
to have the same assumption while querying the data. 

5.2.3 Details Steps of Genetic Clustering  
Population Initialization 

Population initialization is the process of creating a col-
lection of diverse solutions. As described in the Encoding 
& Representation sub-section, we transform the triples in 
RDF data into quads, adding the ability to hold a gene (part 
of the solution) for each vertex, where this gene is a list of 
random solution IDs to which a particular vertex belongs. 
For example, if a Quadruple D has S1 and S5 as genes, then 
that is translated as solutions S1 and S5; both consider the 
edge D as an inter-cluster edge connecting two separate 
clusters. 

In ∀ Ti T there is a set of solutions ∪STi  , where T is ∪ 
of triples t that constructs the graph G, and S is the set of 
solutions s in the population. It is critical to keep in mind 
that the maximum size of such a list is the integer size of 
the population.  The initialization process for populations 
is shown in Fig. 5. The GA client only holds a two-dimen-
sional array of solution-IDs and Modularity Fitness (Inte-
gers and floats), allowing the client to start the selection 
process and initiate the distributed GA operators. Working 
on a fixed, small size two-dimensional array, where the real 
genes are stored in the data blocks in a distributed manner 
taking advantage of HDFS, proved to provide more scala-
bility. 

Solutions Evaluation 
The evaluation was done using the objective functions 

described in the objectives section. Each solution is evalu-
ated by computing modularity on the analogous graph, a 
graph where edges in the solution are marked as inter-clus-
ter edges. We identified the clusters by removing the 
marked edges and considering the disconnected graph 
components as communities. Then, we computed the 
modularity considering the marked edges again as inter-
cluster edges.  

The process of computing the modularity on a large 
graph is both resource and time consuming, so we decided 
to improve it using distributed tasks to be run on the quad-
ruple store created with extra data for solutions. Using 
HDFS and distributing the dataset over multiple machines, 
we were able to batch process each set of solutions (gener-
ation) at once. 
 

After the client side of the algorithm injects current pop-
ulation solutions data into the quadruples stored in HDFS, 
it sends the list of solution IDs (list of integers) to be eval-
uated. Fig. 6 illustrates the evaluation Map tasks. 

The map function is called for each Quad in the graph 
chunk that represents part of the graph. Jena Elephas is 
used with modified input and output class to use Chromo-
some quads rather than default graph quads. Each con-
tainer on the HDFS cluster performs a map operation on 
the graph chunks it has been assigned. After mapping all 
the chunks into pairs of <Keys, Values> representing solu-
tion IDs and Quads that are part of the corresponding so-
lution, the shuffling task takes place. All values for the 
same key are grouped together as <Key, List of Values> 
that represent each solution and the list of marked and un-
marked Quads (Graphs where inter-cluster edges are 
marked). The final stage consists of the reduce tasks that 
are described in Fig. 7.  
 

The FindComponents function was implemented using 
a modified linear finding component algorithm to store 
also the number of intra-cluster edges and the number of 
inter-cluster edges for each community. When reduce tasks 
finish, the results of reducers are written to HDFS, and the 
results contain each solution with its modularity. The re-
sults consist of a fixed size two-dimensional array of inte-
ger solution IDs and a fitness for each solution. The evolu-
tionary algorithm reads this file and continues working on 
an evaluated generation ready for selection, crossover and 
mutation processes. In the last generation, an extra piece of 
information controlled by a boolean configuration variable 
is written to HDFS as well; this piece contains the cluster-
ing affiliation for each node. The reason they are only writ-
ten in the last generation is to lower the write overhead on 
HDFS while affiliations are not needed any time before it. 

Crossover, Mutation and Selection  
Since we stored the chromosomes in a distributed man-

ner, we needed to modify the GA operators used in Jmetal 
open source to be able to run them on the corresponding 
quadruples that represent the graph. This procedure was 

Given a Population_ID list S that contain ID’s of solu-
tions to be evaluated 

   Map (Key index, Value Quad): 
ForEach solutionID in S: 
 If Quad.GetGenes in solution: 
       Quad.marked = True 
       Emit (solutionID , Quad) 
 Else: 
       Quad.marked = False 

Fig. 6. Distributed evaluation of solutions (map task). 

Given a solution S and a set of Quads marked based on 
S, as mappers’ outputs and reducers’ input for a graph 
G with N Quads 

  Reduce (Solution S, EdgesQuads [E1,E2,E3,….EN]): 
     ForEach Quad E in QuadssList: 
          If E.marked = True: 
               MarkedQuads.append(E) 
          Else: 
               UnMarkedQuads.append(E) 
     Endfor 
     Communities = FindComponents(MarkedQuads, UnMarked-
Quads) 
     Modularity = 0 
     ForEach Community C in Communities: 

          DegreeFraction =  

          Modularity += (C. InnerEdges /N)-(DegreeFraction)^2 
     Endfor 
     Emit (S, Modularity) 

Fig. 7. Distributed evaluation of solutions (reduce task). 
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done by developing distributed crossover and distributed 
mutation modules, which in return created jobs of crosso-
ver and mutations to be performed on the corresponding 
population. 

After evaluating the population, the selection process 
starts based on each solution ID and its fitness. Tourna-
ment selection is the selection used, and the reason is to 
avoid converging to locally optimal solutions, which are a 
lot based on our encoding technique. By ranking the pop-
ulation and choosing solutions from each class, a set of par-
ents along with the new offspring IDs were constructed. 
Fig. 8 is a high-level diagram showing the steps in which 
the algorithm creates GA operator’s tasks.  

Encoding and storing solutions in a distributed manner 
delivered the advantage of small and fixed size popula-
tions on a client side. However, GA operators in the open 
source Jmetal needed to be modified as well as NSGAII, 
which was used in our case. The original NSGAII creates a 
population's and offspring's solutions and evaluates it one 
solution at a time; such a situation creates an overhead of 
tasks on HDFS. Rather, we modified NSGAII to DNSGAII 
(Distributed NSGAII) by creating a set of solutions then 
performing evaluation and GA operators at once in one 
MR2 task. Fig. 9 illustrates the task of distributed crossover 
and distributed mutation. 

The distributed crossover and mutation task takes the 

population as inputs along with the selection results, then 
for each quad in the data changes the partial chromosomes 
accordingly. The task removes any solution ID (gene) that 
does not belong to the current population to save space 
and computations. Then, as shown in Fig. 8, the new off-
spring population is sent to evaluation. Here we have to 
note that solutions that belong to a previous generation 
will not be evaluated since they already have fitnesses. 
This copy technique of fitnesses saved an enormous 
amount of computations when we dealt with big data for 
a long series of generations. 

The processes of representation, population initializa-
tion, evaluation, selection and offspring evaluation to pop-
ulation are illustrated in Fig. 10. The numbers represent the 
processes and tasks order. Since we were dealing with dy-
namic data as one of the Big-Data five V limitations (Veloc-
ity, Variety, Veracity, Value and Volume), the algorithm gets 
suspended when it converges to the same solution for a se-
quence of generations then continues working as new data 
arrives to start from the last generation reached.  

Suspension of the algorithm ensures that clustering will 
apply to the new data while old data have the best affilia-
tion found, so there is no need for the clustering process to 
start from the beginning. 

5.3 Partitioning and Placement 
After clustering the RDF data, the last step was to rep-

artition the data and place graph quadruples accordingly. 
The goal in this step was to place quadruples that belong 
to the same cluster and have a high degree of connectivity 
into the same partition to ensure locality of intra-cluster 
quadruples. Another goal was to place highly connected 
inter-clusters into a close partition physically, to map the 
inter-cluster distance onto the physical distance of parti-
tions. Fig. 11 illustrates the desired allocation of quadru-
ples, assuming that the horizontal distance in the figure 
represents the physical distance between the computing 
nodes (the distance of network routing). 

We account for the distance of HDFS nodes by how 
many routing hops between them (networks, routers, 
switches…). We set up HDFS over machines connected us-
ing multiple networks to create a distance in routing. The 
placement script placed quadruples as in Fig. 11.

Fig. 8. Distributed genetic algorithm for RDF clustering. 

 

Fig. 9. Distributed crossover & mutation in genetic search. 

Fig. 10. Distributed genetic algorithm clustering process flow. 
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Partitions are created based on the number of machines; 
each machine has its own partition. A MapReduce job 
scans the quadruples and places quadruples related to one 
random cluster in one partition then emits the placed 
quadruples, leading to where all connected clusters’ IDs 
are stored for the next scan. The second scan places the 
quadruples for the closest inter-clusters in the same parti-
tion and emits from the original dataset. Further, the se-
cond closest inter-clusters are placed into the next closest 
partition. When there are no more interconnected clusters 
left, another random cluster is chosen from the dataset un-
til no more data is available. Fig. 11, for example, illustrates 
how clusters with three inter-cluster connectivity are 
placed in the same HDFS node, and with two inter-cluster 
connectivity are placed in the next HDFS node, further 
clusters are placed in further nodes. 

6 EXPERIMENTS AND RESULTS 
We divided the experiment into two sections: the first 

section is the design and the testing of the clustering algo-
rithm on the graph store to test the clustering results, and 
the second section is about the tests and comparisons of the 
effect of optimization framework on HDFS. All graphs and 
trend models are processed using Tableau [66]. 

6.1 Graph Conversion and Clustering  
We validated the correctness of our clustering algorithm 

and made sure it produced valid and comparable results. 
We chose some well-known small datasets carefully and 
made sure they were the same datasets used in previous 
studies for comparison. These sets are: 
Zachary Karate Club: Graph contains 34 vertices and 78 
edges. Nodes represent members of university karate club, 
and connections between them represent communication 
patterns. It was collected in 1997 [67]. 
Bottlenose Dolphins: Network made of 62 dolphins and 
their interactions, collected over a period of 7 years, 1994.
US Political books: Network of 105 nodes and 441 edges. 
Network represents books about US politics, frequently 
bought together. 
American College football: Network of 115 nodes repre-
senting the teams, and 613 edges connecting them.  

TABLE 1 shows the results of the algorithm validation 
and compares it to some of the popular algorithms. Our 
algorithm achieved a maximized modularity in some cases 
and close modularity in the rest. Some algorithms were 
omitted because of a very high modularity; such results are 

impossible for hard clustering as per Daniel Aloise, Sonia 
Cafieri et al. [68] since they found and proved the optimal 
modularity for each one of these datasets. 

 
The results in TABLE 1 and [68] prove that our approach 

provides results that converge to optimal solutions, and 
the quality of the results (compared to other popular algo-
rithms) are better in most cases. Some cases showed a 
slightly lower modularity. 

We found that selection plays a role in how the solutions 
converge. Furthermore, for certain datasets, binary selec-
tion converges to higher modularity in a smaller amount 
of generations, whereas, random selection can provide a 
higher rate of jumps from local optimal fitnesses.  

The evaluations after each population were reported to 
analyze the convergence of solutions over generations. We 
generated graphs and computed trend models by dump-
ing the population array and using the scatter plot to create 
a visual representation of the outcomes for each genera-
tion. We found a correlation between the distribution of 
modularities and the number of generations to extract such 
modularities. Fig. 12 shows the distribution of modularity 
vs. Generation. 

To scale our approach to Big Data we used LUBM to 
generate RDF graph data and deploy on a cluster with the 
following properties, as in TABLE 2. The configurations we 
used yielded 87 containers. Each container has access to all 
48 disks, two CPU cores and 4 GB of memory. 

We used six computing nodes compared to 10 and 20 
nodes in similar studies. We looked at the number of nodes 
only to validate the effect of network-communications and 
distance in the network. However, in the presence of 
YARN and the notion of containers, it makes more sense to 

 

Fig. 11. Quadruples placement in different HDFS nodes. 

TABLE 1 MODULARITY MAXIMIZATION COMPARISON 

Dataset GN CNM L 
Max 

GATHB MOG
A-Net 

Our 
Method 

Karate 0.4 0.380 0.419 0.4 0.416 0.416 

Dolphins 0.52 0.495 0.523 0.52 0.505 0.528 
Football 0.6 0.577 0.61 0.55 0.515 0.539
Books 0.51 0.502 0.526 0.52 0.518 0.523 

Fig. 12. Population fitness vs. generation scatter plot (karate
club network). 

Network

Inter-Cluster
Intra-Cluster
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compare resources than the number of nodes. Our compu-
ting cluster and our configuration yield to 86 containers, 
each with 4 GB of memory and 2 Threads (one Core) of 
CPU (Max of 2.93 GHz and Min of 2.00 GHz), a total of 344 
GB of memory and 172 CPU Threads (86 Cores), compared 
to a total of 80 GB of memory and 40 CPU cores and 40 
Disks divided equally between 20 computing nodes per 
Huang et al. [1]. 

 
The Lehigh University Benchmark (LUBM) is a univer-

sity domain ontology for synthetic OWL and RDF data 
scalable to an arbitrary size and fourteen queries represent-
ing a variation of properties. LUBM is the most widely 
used benchmark of the Semantic Web community. 

We generated multiple datasets with different sizes to 
compare the behavior of our algorithm. We removed pred-
icates of value “type” or similar before clustering, which is 
a previously adopted way to increase the quality of clusters 
and simplify the complexity of the graph [1]. We analyzed 
the execution time of initializing a population of solutions; 
the population size is 1000 solutions per generation. TA-
BLE 3 presents the execution time for graph conversion 
into quadruples and the initialization of the first popula-
tion. The penalty of having a large amount of time to pre-
pare the data is a tradeoff with the amount of processing 
and querying that is done on the data and can be further 
optimized with new technologies [22]. It is important to 
note that our framework, best used when the data will be 
processed heavily or queried continuously in the future, is 
a good idea to prepare the system for fast response and re-
duced hardware overhead. 

 
We further analyzed LUBM data. Although there is an 

enormous amount of triples, initialization of the first pop-
ulation with random inter-cluster edge affiliations does not 
take a long period of time. Fig. 13 shows the population 
convergence over time to a maximized modularity for a 
dataset of 30M quads. 

The trend model for LUBM 30 million triples dataset is 
illustrated in Fig. 14.  

The encoding technique we introduced created a solu-
tion space with many locally optimal solutions. Hence, us-
ing a mutation rate of 100 percent and multiple-point 
crossovers prevented falling in locally optimal solutions. 
Even though the mutation rate was set to 100 percent, con-
sidering intra-cluster edges as inter-cluster edges results in 
no difference in modularity for a given solution. On the 
other hand, due to the proposed encoding, the chances that 
the solution is affected by the mutation is less than a 100% 
(~72% of the solutions were affected on the data used). The 
encoding proposed is less influenced by mutation than tra-
ditional encoding. Hence a higher mutation rate is neces-
sary to affect solutions. 

Fig. 15 describes the modularities and its count in all 
generations (each bin is a range from the bin x-value until 
the next bin x-value). Since most of the intra-cluster edges 
do not affect the number of communities produced, having 
such edges in solutions do not affect the total fitness and 
explains these high modularity counts for non-maximal 
modularity. Yet, having these quadruples in the solution 
did not affect the algorithm’s ability to jump out of such 

TABLE 2  HADOOP CLUSTER AND CONFIGURATIONS 

Machine  Threads Memory Disks 

Master Intel(R) Xeon(R) CPU 
E5-2699 v3 @ 2.30GHz 

72 64 10 

Node1 Intel(R) Xeon(R) CPU 
E5-2683 v3 @ 2.00GHz 

56 64 10 

Node2 Intel(R) Xeon(R) CPU 
E5-2660 v3 @ 2.60GHz 

40 64 10 

Node3 Intel(R) Xeon(R) CPU 
E5-2660 v3 @ 2.60GHz 

40 64 10 

Node4 Intel(R) Xeon(R) CPU  
X5570  @ 2.93GHz 

16 96 2 

Node5 Intel(R) Xeon(R) CPU        
E5520  @ 2.27GHz 

16 48 6 

TABLE 3  POPULATION INITIALIZATION & ALGORITHM RUN 
TIME (LUBM DATASETS) 

Number of triples Initialize Popula-
tion (S) 

Algorithm Run 
Time (Minutes) 

8,970,048 13.556 21.7 

20,637,270 19.621 31.6 

30,285,222 28.611 47 

221,140,408 207.314 261(~4.3 hours) 

Fig. 13. Convergence to maximum modularity (LUBM 30 mil-
lion Triples). 

Trend Lines Model 

A polynomial trend model of degree 3 is computed for Modularity 
given Generation. The model may be significant at p <= 0.05. 

Equation: 

Modularity = -2.13096e-07*Genera-
tion^3 + 2.51096e-05*Generation^2 
+ 0.00253695*Generation + 
0.0567858 

Model degrees of free-
dom: 4 

R-Squared: 0.820795 
p-value (significance): < 0.0001 

Fig. 14. Trend model description (30 million Triples). 
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cases. 

On a larger scale, we used 221M Quads initialized by 
converting LUBM triples. Fig. 16 shows the distribution 
and the correlation between the fitness measure and its fre-
quency across all generations.  

Fig. 17 shows the minimum, maximum, average and 
Median for each generation modularity fitness. A high mu-
tation rate kept a space for some diverse generations. 

6.2 System Performance Experiments  
In this section, we measure the performance of our sys-

tem against multiple RDF stores including SHARD after 
clustering and placement. We used Cloudera Impala to cre-
ate a table on the data. We focused mainly on time and re-
source usage. The system configurations used are the same 
as in TABLE 2. We refer to our framework as cluster parti-
tioning. 

In our experiments, we generate a dataset using LUBM. 
The generated dataset’s size was from 37 to 142 GB in N-
Triples format and contained from 200 million to 600 mil-
lion triples (see TABLE 5). TABLE 6 shows each query’s 
complexity as the number of joins in each query in regards 
to the benchmark. 

6.2.1 Clustering and Load Time  
The results of loading 270 million RDF triples into a 

twenty-machine HDFS cluster as per Huang et al. [1], are 
shown in TABLE 4. For a ten-machine cluster, as per 
Alexsander et al. [24], the loading time was 40 minutes. 
Our results are shown in TABLE 5.  

Because of the differences in resources, for benchmark-
ing queries in the Query Performance Comparison section, 
we normalize results to be able to compare query response 
time. There is a noticeable workload in terms of time to 
prepare the Cluster-based partitioned RDF against hash-
partitioning the data. However, the effect on optimization 
during query time and storage is a trade off, as we describe 
in the Query Performance Comparison section. It is critical 
to point out that the number of triples has a larger effect 
than the storage size in GB; since different compression can 
solve the storage size issue but not the amount of infor-
mation needed to be processed. It is also very important to 
note that clustering results are stored by our proposed ar-
chitecture, so when new data and changes become availa-
ble, the algorithm does not need to start over. In other 
words, adding changes to data, to some extent, happens in 
close to real time by adding the new triples to the physical 
server that has the data-cluster it connects to.  

  
TABLE 4  Loading time as per Huang et al. [1] for 270 

Million triples 

 

Fig. 15. Count of modularity for all generations as modularity 
bins (LUBM 30 million triples).  

Fig. 16. Convergence to maximum modularity over genera-
tions (LUBM 221 million triples). 

 

 

Fig. 17. Convergence to maximum modularity over genera-
tions (LUBM 221 million triples). 

System  Load Time 
RDF-3X 2.5 H 
SHARD 6.5 H 
Hash Partitioning 0.5 H 
Graph Partitioning 4.2 H 

TABLE 5  CLUSTER PARTITIONING LOAD TIME 

Number of Triples   Size (GB) Load Time (~) 
221,278,374 37.1 3.8 Min Conversion  

4.3 H clustering and placement 
427,016,108 82.7 6.5 Min Conversion  

7.2 H clustering and placement 
613,190,853 142.3 8.1 Min Conversion  

9.4 H clustering and placement 
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6.2.2 Query Performance Comparison  
To compare to other studies, we need first to understand 

the complexity of each query of the 14 queries. As shown 
in TABLE 6 [1], each query has a count of subject-to-subject 
joins (S-S) and subject-to-object joins (S-O).  

Hash partitioning maps the same keys (subjects) to the 
same blocks. Thus, optimization issues are less likely to 
happen in subject-to-subject than subject-to-object joins. 
subject-to-object joins are the ones that cause most of the 
optimization issues in hash partitioning the data since it 
does not ensure the values of the same key (related data 
points) to be in the same data blocks. 

 
Huang et al. [1] showed that the queries could be char-

acterized into two groups. Queries 1, 3, 4, 5, 7, 8, 10, 11 and 
12 run fast on single-machine RDF stores like RDF-3X; que-
ries 2, 6, 9, 13 and 14 run slower on single machine RDF 
stores. For fast queries, data size does not matter as much 
since it is reduced before scans are required [1]. Hence, par-
alyzing such stores on multiple machines does not have 
many advantages and will only add a network delay for 
queries to start [1]. On the other hand, the slow queries lack 
scalability on single machine RDF stores. 

Unlike a data-aware HDFS framework, some previous 
efforts have been achieved for slow queries, for example 
hash-partitioning the data on SHARD. However, hashing 
led to subject-to-object joins’ limitations due to the need of 
moving intermediate data over the network. Another ex-
ample is Huang et al. where the objects connected to a sub-
ject were processed to fall into the same blocks for one or 
two hops between subject and object. However, space lim-
itations due to an increase in data size were present; also, 
there is a limitation of applying such an algorithm to a 
highly-connected graph [1]. We used clustering in our 
framework rather than hops. So, triples do not need to be 
replicated as many do in different partitions, and no in-
crease in the data size occurred (other than HDFS replica-
tion for reliability). Other works like Sempala [24], or using 
HIVE, PigSPARQL [25] & [26], MapMerge [27] and MAP-
SIN [28] overcame scalability but used different storage

than triples. 
Huang et al. [1] covered four different frameworks on 

LUBM 270 million triples, evident in Fig. 18. 
As observed in Huang’s et al. [1] results, changing the 

data in each sub-graph partition to include vertices that are 
two hops away from each subject in each triple increases 
efficiency in regard to execution time. However, it in-
creases the data size dramatically as well as adding an ex-
tra step of processing duplicates after the query finishes. 
Huang et al. [1] explained it as a tradeoff between size and 
fast response time. 

The two hops guarantee that the technique enabled the 
optimization of queries 2, 7, 8, 9, 11 and 12.  On the other 
hand, it slowed down the rest of the queries compared to 
hash-partitioned data, since there was an extra required 
step to remove duplicates created by the replication algo-
rithm they used. Hops-guarantee had no optimization to 
the rest of the queries. Queries 1, 3, 4, 5, 6, 10, 13 and 14 
were equal or faster in the hash-partitioned graph than 
Hops-guarantee since they only had subject-to-subject 
joins and no duplicate removal steps were needed. 

Comparing our cluster-based partitioning and SHARD 
allows one to directly see the benefit of our proposed graph 
partitioning technique on the naive triple placement on 
HDFS. To compare our results, we first took into consider-
ation the difference in HDFS resources. It is very hard to 
match the two different Hadoop ecosystems since we do 
not have a clear idea about what are the exact configura-
tions or what other services are running on those machines 
that might slow down the queries. However, one solution 
is to perform SHARD on our Hadoop eco-system on the 
same number of triples, then find the ratio of the differ-
ence. In other words, if Query Q1 on native HDFS took X 
time on cluster (A) and 2X on cluster (B) with the same na-
tive HDFS, then cluster (A) has 2 times speed up for Q1. 
So, optimizing Q1 to be Y speed up using a specific algo-
rithm means Q1 time will be X/Y on cluster A and 2X/Y 
on cluster B for that specific algorithm. Note that optimi-
zation of a specific algorithm is measured in terms of Y 
times efficient than native HDFS regardless of the cluster 
used. Fig. 19 shows the comparative results (mean) for our 
data-aware HDFS framework (Cluster-Based partitioning) 
after running each query 20 times with an average variance 
of 0.06. 

Results reported an increase of execution time efficiency 
for queries 2, 3, 6, 9, 13, and 14. Close efficiency occurred 
in queries 1 and 10. A less efficiency occurred in 4, 5, 7, 8, 

TABLE 6  LUBM QUERY COMPLEXITY [1] 

Query S-S Joins S-O Joins Total 
Q1 1 0 1 
Q2 3 3 6 
Q3 1 0 1
Q4 4 0 4 
Q5 1 0 1 
Q6 0 0 0 
Q7 1 2 3 
Q8 3 1 4 
Q9 3 3 6 
Q10 1 0 1 
Q11 1 1 2 
Q12 2 1 3 
Q13 1 0 1 
Q14 0 0 0 

Fig. 18. Huang’s query time (LUBM 270 million triples). 
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11 and 12. The reason behind the improvement in subject-
to-subject joins is the extra step of removing duplicates in 
graph-partitioning that Huang et al. used [1]. On the other 
hand, the efficiency increase related to subject-to-object 
joins was caused by the least amount of data scanned and 
moved by cluster-based partitioning, since cluster-based 
partitioning ensured the presence of most objects related to 
subjects in the same partition without the duplicates in an-
other (less scans). Such results also reported less storage 
space than graph partitioning reported in [1]. 

We further analyzed the network traffic on each HDFS 
computing node using Linux performance monitoring 
tools. SAR commands were used to monitor network 
adapters on each machine during each query. The results 
were aggregated from the report of each HDFS node to one 
file. Our framework effect on network traffic optimization 
for LUBM queries on a 221 million triple RDF graph is as 
follows: a great optimization factor on mostly S-O joins, a 
reduction by a factor of ~200X for Q7 hash partitioning of 
SHARD and cluster based triple placement. Furthermore, 
~160X for Q8 and ~150X for Q9 optimization also were re-
ported on network traffic.  

Even though one of our goals is to deal with dynamic 
data, we looked at frameworks like Sempala, PigSPARQL, 
MapMerge and Sempala-Using-Hive, regardless of their 
limitations in dealing with dynamic updates. Fig. 20 illus-
trates results for 221 million RDF record. 

7 CONCLUSION  
In this article, we presented a data-aware HDFS and the 

services running on top of HDFS that optimize state-of-
the-art RDF stores. We proposed a cluster-based data par-
titioning to manipulate the physical locality of the data to 

match the graph locality as well as the causality in HDFS 
processes. This allowed parallel processing of queries for 
data on HDFS that required less resource usage. Our 
framework was able to perform faster than some attempts 
and slightyly slower than other attempts for scalable RDF 
data stores. However, with less resource usage. Studies in 
next-generation analytics and lambda architecture [15], 
[16], [17] and [18], along with Apache Kudu [20] and a set 
of studies in [21] proved to be fast and more efficient in 
processing of OLAP workloads and showed a strong per-
formance in running time-critical workloads. It is worth 
the effort, however, to study the impact of intelligent data 
placement on such methods. For future work, we plan to 
further improve the distributed encoding and the genetic 
operators to reduce computation overhead. We also plan to 
experiment with dynamic updates for a larger velocity of 
data flow and to utilize tools and frameworks of the 
lambda architecture and next-generation analytics pre-
sented in the recent studies. 
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