
1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

1

HiAuth: Hidden Authentication for Protecting
Software Defined Networks

Osamah Ibrahiem Abdullaziz, Student Member, IEEE, Li-Chun Wang, Fellow, IEEE, and Yu-Jia Chen

Abstract—Software defined networking (SDN) enables net-
work function programmability for ease of configuration and
maintenance, and also allows network administrators to change
traffic rules on the fly. However, denial of service (DoS) attacks
pose security challenges on the centralized control plane of
SDN. Although the transport layer security (TLS) can help
secure the control plane, it is computationally intensive, complex
to configure, and not mandatory in OpenFlow protocol. In
this paper, we present a lightweight authentication solution,
called Hidden Authentication (HiAuth), to protect the SDN
controller by hiding the identities of the forwarding devices into
the control packets via efficient bitwise operations. HiAuth is the
first to incorporate information hiding techniques into OpenFlow
to provide security against DoS attacks. HiAuth exploits the IP
identification field of IPv4 and the transaction identification field
of OpenFlow in two authentication schemes. The experimental
results show that HiAuth can effectively mitigate intruder DoS
attacks and provide high undetectability to attackers.

Index Terms—Software defined networking (SDN), OpenFlow,
Denial of service (DoS) attacks, Information hiding.

I. INTRODUCTION

SOFTWARE defined networking (SDN) decouples the net-
work control from the forwarding devices hence simplifies

and enhances network management [1]. In general, SDN
architecture consists of three layers: application plane, control
plane, and data plane. Fig. 1 illustrates the architecture and
the interfaces between the three layers of SDN. The north-
bound application programming interfaces (APIs) allow SDN
applications to convey routing and security policies into the
control plane. Subsequently, SDN control plane enforces those
policies on the forwarding devices through the southbound
APIs. OpenFlow is the first SDN standard which defines open
southbound interfaces for controlling network flows.

The SDN centralization of network intelligence with the
availability of a global view of the entire network improves
programability and scalability for future network and service
management. As a result, many new SDN applications are
proposed to optimize the network performance from different
aspects, including throughput maximization [2] [3], deter-
ministic delay guarantee [4], and security enhancement [5]
[6]. Clearly, the capability to influence the network behavior
through software from a logically centralized control brings
several advantages. However, software vulnerabilities become
a concern [7]. More severely, the centralization of the control
plane can cause a single point of failure. Unfortunately, trans-
port layer security (TLS) is optional in OpenFlow protocol.

Osamah Ibrahiem Abdullaziz, Li-Chun Wang, and Yu-Jia Chen are with Na-
tional Chiao Tung University. Corresponding author: Li-Chun Wang (Email:
lichun@g2.nctu.edu.tw)

Because of its configuration complexity, TLS is not adopted
by some OpenFlow-enabled switches and controllers [8]. As
a result, the legitimacy of the forwarding devices can not be
verified. Hence, malicious attackers can easily launch denial
of service (DoS) attacks against the SDN controller.

To resolve the DoS issue, we first generalize the threat
concerns of DoS attacks against the SDN controller. In par-
ticular, we study the possible DoS attack scenarios, including
the outsider and the insider attack classes. Then, we evaluate
the DoS impacts on the SDN controller. Finally, we present a
lightweight authentication mechanism, Hidden Authentication
(HiAuth), to mitigate intruder DoS attacks.

HiAuth has two important features: 1) obscure and 2)
lightweight. Firstly, for obscurity, HiAuth mimics the original
statistical distributions of the values generated by the operating
systems to stay undetected by attackers. Secondly, for being
lightweight, HiAuth only relies on simple bitwise operations
for computations. Thus, it does not require specialized hard-
ware. To the best of our knowledge, HiAuth is the first
to incorporate information hiding techniques into OpenFlow
protocol to provide security against DoS attacks at the protocol
level. Here, we propose two HiAuth schemes:
• IP identification (IPID) based HiAuth which conceals the

identities of the forwarding devices within the IPID field
of the IPv4 header.

• Transaction identification (XID) based HiAuth which
conceals the identities of the forwarding devices within
the XID field of the OpenFlow header.

IPID-based HiAuth provides authentication at the network
layer. However, in the case if IPv4 becomes obsolete in
the future or a complete transition to IPv6 occurs, XID-
based HiAuth can be utilized to provide the same level of
authentication.

The rest of the paper is organized as follows. Section II
provides a background on SDN security challenges and net-
work information hiding. Section III investigates the security
of the SDN control channel including the TLS usability and
the threat of DoS attacks on SDN controller. Section IV
reviews the existing work on IPID-based information hiding
and Section V details the proposed authentication schemes.
Section VI presents the experimental results. Section VII
provides recommendations and discusses the strengths and
the limitations of the HiAuth schemes. Finally, we state our
concluding remarks and future work in Section VIII.

II. BACKGROUND

In this section, we discuss the impact of SDN features on
its security and introduce the concept of network information

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

2

Access
Management

Load
Balancing Security

Control Plane

Application Plane

Data Plane

Northbound
API

Southbound
API

OpenFlow
Switch

Host

2a

1a

1b

1c

1d 1e
2b

2c
Admin

Fig. 1: SDN architecture and its security challenges.

hiding.

A. Security in SDN

SDN has two main advantages: network programmability
and centralized network management. First, with separation
of control plane and data plane, programmable SDN allows
network policies to be modified by software instead of manual
configurations as compared to traditional networks. To update
a network policy in traditional networks, each device has to
be manually configured, which may cause misconfiguration
and thus leads to security vulnerabilities [9]. Secondly, the
centralized control logic can facilitate network management
because of the availability of the network global view [10].

Security in SDN has two aspects, namely security through
SDN and security of SDN. On the one hand, security through
SDN focuses on utilizing SDN features to resolve traditional
network security issues. SDN security applications can inspect
packets through the control plane. After security analysis,
these applications can drop or redirect the traffic to security
middleboxes [11]. On the other hand, security of SDN deals
with the security challenges caused by SDN, e.g., single point
of failure.

To further elaborate the differences between these two
aspects, we take DoS prevention as an example. In security
through SDN, DoS attack on traditional networks can be
prevented by SDN applications [6] [12]. In [12], Defense4All
is designed to detect and mitigate DoS attacks. Defense4All
performs two main tasks, namely (a) behavior monitoring
by analyzing traffic statistics, and (b) traffic redirecting by
setting flow entries to reroute the DoS traffic. A web server
under a DoS attack within a network can be protected by
such SDN applications. In the case of security of SDN,
DoS attack against control plane can be prevented at the
protocol level. TLS and rate limiting techniques are solutions
recommended by the current SDN standards. The proposed
HiAuth mechanism belongs to the latter aspect in which it
aims to provide a lightweight packet level authentication to
prevent DoS attacks against the control plane.

Security of SDN architecture faces system and network-
traffic related challenges. Fig. 1 illustrates these two kinds of
security challenges, where label (1) and label (2) refer to the
system and network-traffic related challenges, respectively.

1) System Related Security Challenges

SDN inherits most of the system-related security threats
from traditional networks. More dangerously, the benefits
that SDN brings to the network management also inten-
sify the impacts of these threats, which are described as
follows.

a) Administrative Device Security - The administrative
device is the management machine which is used by
network administrators to access the application plane.
Vulnerable management machines put both data and
the entire network at risk. One countermeasure is
to keep the management machine updated and adopt
strong security scheme, such as multi-level authentica-
tion.

b) Application Security - Practically, no software comes
without bugs or flaws. Network applications and ser-
vices will always be targeted by malicious attackers.
SDN heavily relies on software to manage the network.
If the network behaviors can be changed by software, it
is susceptible to software related vulnerabilities as well.
Therefore, a malicious application could potentially
compromise the network. In this case, timely reliable
software update and patching are essential.

c) Controller Device Security - SDN controller is the most
important element in the SDN architecture. Similar to
management device security, the controller operating
system and its applications are attractive targets and
share the same threats. A faulty or malicious controller
could violate the desired behavior and thus harm the
entire network. Existing security solutions in traditional
networks and continuous update can be applied to
protect the controller from these threats.

d) Forwarding Device Security - It may seem that a
faulty or a malicious switch is harmless to the network
since SDN moves the intelligence from the forwarding
devices to its controller. This is not true because a
single switch can be exploited to discard or reroute
network traffic. In the worst case, a switch can be used
to overload the controller with forged requests in a DoS
attack.

e) Host Device Security - The security of a host in
SDN is equally important. A malicious host can be
exploited to indirectly saturate controller resources.
When a host communicates with another host, the SDN
switch checks its flow tables for a matching rule. If not
matched, the switch requests routing information from
the controller. By exploiting this procedure, an attacker
can launch a DoS attack against the controller.

2) Network Traffic Related Security Challenges

Unlike system-related security, network-traffic related se-
curity focuses on the vulnerabilities of communication
protocols. SDN transforms the network from vertically
centralized to horizontally distributed architecture. This

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

3

design extends the mutual-communications [13] among
components and therefore brings new network security
challenges as follows.

a) Administrative Channel Security - Refers to the secu-
rity of the channel between the administrator device
(can be a mobile device) and the SDN applications.
Lack of security protocols in this channel may lead to
network policy tampering through man-in-the-middle
(MITM) attacks.

b) Management Channel Security - Refers to the security
of the channel between the SDN applications and the
network controller. This is especially critical when
SDN applications and controller run on different phys-
ical machines. The lack of trust and authentication
mechanism between SDN application and controller
may lead to security threats such as MITN and DoS
attacks.

c) Control Channel Security - Refers to the security
of the channel between the SDN controller and the
forwarding devices. In the absence of an authentication
protocol in this channel, DoS and MITM attacks can
target control channel devices.

B. Network Information Hiding

Intuitively, information hiding aims to intelligently insert
data into a suitable carrier, while keeping the tampering of
that carrier imperceptible [14]. Information hiding applications
include steganography [15], fingerprinting, watermarking [16],
and authentication. Commonly, a digital carrier such as text,
image or video is exploited for hiding information. More
recently, network protocols are utilized for information hid-
ing [17]–[20]. Network information hiding deals with hiding
information into network traffic. In general, network informa-
tion hiding schemes are evaluated by their capacity, robustness
and undetectability [21]. Capacity is the amount of hidden
information per second. Robustness refers to the resistance
against altering hidden information in the noisy channels.
Lastly, undetectability is the ability to avoid detection. In
general, there are three kinds of network information hiding
schemes:
• Packet data unit (PDU) scheme - Inserts data into packet

headers. PDU schemes can be easily implemented and
provide high capacity. In [22] and [23] packet length
is used to hide information, whereas the time to live
(TTL) field of IP protocol is utilized in [24]. On the other
hand, [17] exploits Etherleak vulnerability [25] to hide
information by padding small Ethernet frames.

• Protocol behavior (PB) scheme - Encodes data by exploit-
ing network protocols’ behaviors. In [26], the retransmis-
sion of reliable protocols is exploited. In another example,
the reception and the absence of packets within a pre-
defined period of time is utilized to encode information
in [27].

• Network applications and services (NAS) scheme - Ex-
ploits the characteristics of network applications to hide
information. In [18] the encrypted packets of silence
signal in Skype VoIP application is exploited.

TABLE I: IPID generation in various operating systems.

OS Version Global
counter

Per-dst
counter

Randomly
generated

Windows XP/7/8/10
Ubuntu 16.04
Android 4.3
MacOS 10.12.5

iOS 6.1.3
OpenBSD 5.2

Among the investigated PDU-based schemes, the IPID
field [28] is considered for information hiding [29]–[33]. In
our recent work [19], called AIPISteg, both the IPID field and
the packet payload are utilized to hide information. The IPID
can be used to recover a fragmented packet at the destination.
IP fragmentation can divide a packet into smaller ones with
smaller maximum transfer unit (MTU). For this reason, IPID
uniquely associates fragments to packets for reassembly at the
destination. Despite the fact that IPID is defined in [28], the
details of its generation algorithm is not given. As a result,
IPID is openly implemented by vendors but still complies to
the requirements in the specification. To the best of our knowl-
edge, there are three IPID generating mechanisms: global
incremental counter, per-destination incremental counter, and
pseudo random generation. The IPID generation mechanisms
for various operating systems are summarized in Table I.

Generally, if a unique IPID is desired, the maximum possi-
ble period before repeating an IPID is 216 − 1 since the IPID
field is 16-bit in size. Therefore, the easiest implementation
of IPID generation mechanism is an incremental counter.
In Windows-based operating system, a global incremental
counter is used for IPID generation. That is, network applica-
tions share the same counter. On the other hand, Linux-based
operating systems, such as Ubuntu, utilize per-destination
incremental counter, where counters are created for every
destination [34]. Alternatively, Unix-based operating systems,
such as Mac OS X, iOS and OpenBSD, follow the pseudo
random IPID generation process. Although the IPID values
are randomly generated, the aforementioned platforms ensure
that the IPIDs are not repeated too soon.

III. CONTROL CHANNEL SECURITY

A. TLS Usability and Adoption

Security is essential, but it is not always considered when
designing new network architectures or protocols [35]. Like-
wise, the security of SDN architecture is afterthought. One
evidence to this fact is the widespread failure in the adoption of
TLS for the control channel. Since after the earliest OpenFlow
specification v1.0.0, the communication between the controller
and the switch optionally recommends TLS connection. That
is, the subsequent OpenFlow specification versions, including
the latest v1.5, make TLS an optional communication mode.
Consequently, many SDN vendors do not support TLS in their
products. A survey on the TLS adoption by various SDN
vendors was presented in [8], showing that many controllers
and switches do not support TLS connection. In addition to
being optional in the specification, the failure in TLS adoption
may be regarded to the following reasons:

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

4

Legitimate
PacketIn

OpenFlow
Switch

DoS
PacketIn

DoS
Attacker

(a) (b) (c) (d)

SDN
Controller

Compromised
Switch

Healthy
Host

Compromised
Host

Attack
Channel

Authenticated
Channel

Attack
Packet

Inside
Attacker

Fig. 2: DoS attacks scenarios against SDN controller. (a) Unauthenticated channel DoS, (b) Man-in-the-middle DoS, (c)
Compromised host DoS, and (d) Compromised switch DoS.

• Configuration complexity: the tasks involved in the proper
configuration of a secured TLS connection are challeng-
ing [36] [37].

• Lack of mutual support: the lack of TLS support in both
the controller and the switch simultaneously. TLS can be
CPU-intensive for some switches [38];

• Rapid standardization: vendors put more attention on the
rapid development of OpenFlow.

Recent studies show that configuring TLS is challenging
even for an experienced user. In [36], the usability issues in
deploying TLS were investigated. Participants in this study
are the knowledgeable individuals in the field of security
and privacy-enhancing technologies. The results in [36] was
evaluated based on TLS server rating criteria [39]. Only 21%
of the participants were graded A, while 57% and 7% and
14% of participants were graded B, C, and failed, respectively.
Other studies focused on the effect of certificate warnings and
the linguistic difficulty of browser warning messages on non-
expert users [40], [41].

To verify this finding, we performed an empirical analysis
on the TLS configuration of the top 450 web servers reported
by alexa.com. In this analysis, we also utilize Qualy’s SSL test
and evaluation criteria [39]. Our result shows that 59% of the
tested servers scored grade A, whereas 26% of them scored
below. Fig. 3 shows the result of TLS configuration analysis.

B. DoS Attacks Against SDN Controller

Due to the centralized nature of SDN, the lack of security
enforcement, and TLS usability issues, DoS becomes a major
concern. Here, we systematize the possible scenarios where
DoS attacks can be launched against SDN controller. Note
that there are two classes of DoS attackers, namely outsider
and insider. An outsider attacker is an intruder by the network
legitimate devices. On the other hand, an insider attacker is
a compromised legitimate device that can communicate with
other members in the network [42]. Accordingly, we dictate

that the DoS attacks against the SDN controller can be in one
of the following scenarios:

a) Unauthenticated channel outsider DoS (Fig. 2(a)): In
the absence of TLS authentication mechanism, switches
communicate with the controller through a plain TCP
connection. Specifically, a switch only requires the IP
address and the port number of the controller to establish
the communication. In that way, an intruder can pretend
to be a legitimate switch and flood the controller with
a large number of packets. For example, a tool for
identifying SDN networks and attacking its controller was
introduced in [43].

b) Man-in-the-middle (MITM) outsider DoS (Fig. 2(b)):
Similarly, in the absence of an authentication mechanism,
a MITM attack is possible [44]. In this scenario, the
MITM attacker impersonates a legitimate switch and
attempts to connect to the controller for the purpose of
disrupting the controller connection with the legitimate
switch. For instance, in [45] a vulnerability in Open
Floodlight controller is exploited which allows an attacker
to impersonate a legitimate switch and disable its control
link.

c) Compromised host insider DoS (Fig. 2(c)): Hosts software
vulnerabilities may present opportunities for an attacker
to launch an insider DoS attack. In this situation, an
attacker exploits the vulnerability of a legitimate host to
gain access to the network and carefully crafts packets
to its connected switch to exhaust the controller re-
sources [46] [47].

d) Compromised switch insider DoS (Fig. 2(d)): As ex-
plained in Section II-A, malicious switches may harm
the SDN network. Similar to type (c) attack, a mali-
cious switch may exhaust the controller resources and
ultimately affect the network availability [47].

The outsider class of DoS attacks can be prevented by an
authentication mechanism that can verify the identity of the

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

5

A+ A A- B C D E F M
TLS Configuration Grade

0

50

100

150

200

250

300
N

um
b

er
of

W
eb

S
er

ve
rs

score >= 95

score >= 90

score >= 80

score >= 65

score >= 50

score >= 35

score >= 20

score < 20

no valid cert

Fig. 3: Analysis of the TLS configuration quality of the top
450 web servers.

forwarding devices. In this case, when TLS is not supported,
the control plane resources can be easily violated. HiAuth
aims to prevent outsider DoS attacks through a lightweight
authentication mechanism.

The insider class of DoS attacks can be prevented by
various techniques including request rate limiting [48]–[51],
controller scheduling [52] and request classification and pri-
oritization [53]–[55]. For example, a rate limiting approach is
introduced in OpenFlow 1.3.0, which enables the controller
to lower the request rates of the switches when the rates are
more than it can handle. In addition, AvantGuard [48] and
LineSwitch [49] utilize rate limiting to mitigate a traditional
TCP-based DoS attack, known as SYN flooding, in SDN
architecture. FloodGuard [50] and FlowSec [51] introduce
protocol-independent rate limiting techniques.

SDN network implements two modes for flow routing rule
installation into switches, namely proactive and reactive. In
the proactive mode, flow routing rules are pre-installed in
advance into switches for anticipated routing destinations. On
the contrary, in the reactive mode, flow routing rules are
installed by the controller in run time as response to packet-
In messages. Switches in the reactive mode networks send
packet-In message to the controller when no rule is matched
in the flow tables. The packet-In messages are the only switch
messages to which the controller is required to respond.

In our previous work [46], we simulated a DoS attack to
demonstrate the impacts of DoS on SDN network. A reactive
network was simulated, where the controller spends some
resources to answer packet-In messages. This DoS attack
generates a large number of carefully crafted packets with
unique flow attributes to cause the no-match events and the
packet-In messages. As a consequence, these huge number of
attack packets can impair the network usage in two ways:
saturate the switch flow tables and then deny legitimate
rule installation and exhaust controller resources and keep it
busy from responding to the legitimate switches’ packet-In
messages.

Fig. 4 shows the experimental result of the controller
throughput during normal operation and during DoS attack.
The x-axis represents the time in seconds. while the y-axis

0 5 10 15 20 25 30 35 40
Time (s)

0

5

10

15

20

25

30

35

T
hr

ou
gh

pu
t

(r
es

p
on

se
/m

s)

Normal Operation

DoS Attack

Fig. 4: Controller throughput during normal operation and
during DoS attack (dotted line) [46].

represents the throughput, which is the number of controller
responses per millisecond. The average throughput of the con-
troller is first evaluated during normal operation. Subsequently,
with the same configuration, the throughput of the controller
is evaluated during the DoS attack.

To mitigate the threat of DoS attacks in SDN, it seems
applicable to replicate the control plane [7], i.e., changing
the control plane from centralized to distributed architecture.
However, this solution may not be viable. In [56], it is shown
that by merely utilizing multiple controllers (replicas) in SDN
networks may not be sufficient to avoid a single point of
failure. It is observed that the load of the backup controllers
may exceed their capability and results in cascaded failures.

IV. IPID-BASED INFORMATION HIDING

Most of the IPID-based information hiding methods assume
that the IPID value is random [29]–[33]. It is not true in
most operating systems as shown in Table I. In particular, at
least three IPID-based random data embedding schemes are
proposed in the literature: (1) 2-byte plain data embedding
(PDE) [29], (2) 1-byte encrypted data and 1-byte random
data embedding (EDE-1) [30], and (3) 2-byte encrypted data
embedding (EDE-2) [31]–[33]. In PDE method, the 16 bits of
the IPID field are replaced by the ASCII representation of the
hidden information. Specifically, Rowland’s proposal [29] is an
example of PDE and the pioneering work in the area of IPID-
based information hiding. Although it is straightforward and
easy to implement, this method has the following weaknesses:
• Easily detectable - It results in abnormal IPID dis-

tribution, which can be easily distinguished from the
original IPID distribution regardless of the utilized IPID
generation mechanism.

• Vulnerable to unauthorized access - The embedded data
are not protected and can be easily extracted from the
IPID if anomaly is detected.

• Vulnerable to IP fragmentation - The IPID is duplicated
when fragmentation occurs. Hence, the recipient receives
multiple copies of the same data.

Later, the authors of [30] developed another method to
encrypt the data by using Toral Automorphism [57] before
the embedding process. Next, a byte of the encrypted data is

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

6

embedded into the first byte of the IPID and the second byte
is randomly generated for the purpose of packet identification.
Also, they suggested to probe the network for maximum
transmission unit (MTU) prior to initiating the communication
session. This method improves the secrecy of the embedded
data but the channel capacity is greatly reduced. In addition,
conventional path MTU discovery [58] relies on Internet
control message protocol (ICMP) to probe the transmission
path for the smallest packet size. Unfortunately, more and
more networks drop ICMP packets to avoid DoS attacks [59].
Alternatively, [31]–[33] suggested to utilize packetization layer
path MTU discovery (PLPMTUD) [60], which depends on
TCP to probe for a network’s MTU setting. In their work, the
full two bytes of the IPID field is replaced with two bytes of
the encrypted data.

Indeed, the knowledge of MTU is critical for the aforemen-
tioned methods. In practice, however, the MTU value may vary
even for the same communication session. Moreover, some
networks still connect to non-compliant devices, which may
fragment packets even if fragmentation is not permitted by
the network applications [61]. In addition to the drawback
of relying on path probing, random IPID-based methods also
neglect the mechanism in which the IPID values are generated
by different operating systems. The existing works assume
that encrypting the data results in random values, which
are suitable for IPID. In fact, exploiting the randomness of
the encrypted data as IPID values for secret communication
applications is not viable. This is because the random IPID
values generated by operating systems exhibit statistical distri-
bution which is different form those of the existing IPID-based
methods. For this reason, the existing IPID-based methods are
vulnerable to anomaly detection.

To overcome the shortcomings of the existing works, we
propose an authentication application of information hiding –
HiAuth. In this scheme, the statistical distributions of the IPID
values generated by various operating systems are analyzed
first. Next we introduce a corrective mechanism to rectify
the distribution of the HiAuth IPID values. Furthermore, a
fast stream cipher is utilized to protect the hidden data and
provide randomness to the generated IPID values. Finally, we
develop the solutions to handle data duplication when packet
fragmentation occurs.

V. HIDDEN AUTHENTICATION

HiAuth is a packet-level authentication mechanism aiming
to mitigate the class of outside DoS attacks against the
control plane. On one hand, HiAuth is lightweight in terms
of computation since it only needs a bitwise operation and
a simple mapping function to hide the identity information
of a device into control packet header. On the other hand,
HiAuth configuration is rather straightforward and easy when
compared to TLS configuration. In this section, we introduce
two HiAuth schemes namely, IPID-based HiAuth and XID-
based HiAuth.

A. IPID-based HiAuth
IPID-based HiAuth is designed to be utilized in the plat-

forms that implement randomness in their IPID generation.

Despite the work published in the literature on hiding in-
formation into the IPID field, it is clear that most of those
methods neglect the obvious alteration which is introduced
to the distribution of IPID. Furthermore, all the methods are
functional only when the network MTU is predetermined.
Therefore, we propose IPID-based HiAuth to provide packet
authentication and overcome these shortcomings.

The IPID-based HiAuth encoding and decoding processes
are symmetric and consist of three functions: (1) one-time
pad generation, (2) data mixing, and (3) distribution corrective
mechanism. HiAuth encoding process requires the following
inputs: a) a 256-bit key, a 64-bit block counter, and a 64-
bit nonce to be used in the one-time pad generator, and b)
a 12-bit device identification to be used in the data mixing
function. The output of these two functions is then mapped
into a 12-bit IPID base value. Finally, a distribution corrective
mechanism converts the IPID base value into a distribution
compliant 16-bit IPID which will be used for the control
packet transmission.

1) One-time Pad Generation (OPG): is an important func-
tion of HiAuth to maintain the security of the authentication
process. OPG relies on high-speed stream ciphers to produce
key stream. For instance, RC4 and ChaCha stream ciphers
are known for their simplicity and speed in software. Here,
we exploit ChaCha [62] for its proven security. ChaCha is a
secure, fast and remarkably simple stream cipher algorithm.
Recently, ChaCha has gained more popularity especially after
Google included it in its openSSL cipher suite [63]. Although
ChaCha is mainly utilized for encryption, its core design
can be treated as one-time pad generator. When compared to
the well-know Advanced Encryption Standard (AES), ChaCha
is three times faster in software implementation running on
platforms that lack specialized AES hardware [64]. In addition,
ChaCha is not vulnerable to timing attacks as in the case of
AES [65].

ChaCha state is a matrix of 4 × 4 32-bit unsigned integers
(16 words) which get scrambled by a function called quarter
round (QR) for r number of rounds. The initial state X consists
of 4 words of constant c, 8 words of key k, 2 words of block
counter b (incremented after r rounds), and 2 words of nonce
n.

X =
*....
,

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

+////
-

⇐

*....
,

c c c c
k k k k
k k k k
b b n n

+////
-

The number of rounds can be 8, 12 or 20. That is, if r =
8, the QR function will run 32 times before producing an
output stream. A QR performs arithmetic operations including
� addition modulo 232, ≪ rotation, and ⊕ exclusive-or on 4
words each time and alternate between column or diagonal
rounds (see Algorithm 1).

Once the QR function has ran for the specified number
of rounds, the updated state is added to the current state
matrix resulting in a 64-byte of key stream. IPID-based HiAuth
extracts 12-bit pad Sr from the key stream to be used in the
data mixing function. The parameters of ChaCha algorithm
and the device ID can be configured either offline by the
network administrator or over the network through existing key

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

7

Algorithm 1: ChaCha Quarter-round Function
Input: four 32-bit words a, b, c, and d
Output: scrambled words a, b, c, and d

1 begin
2 a ← a � b;
3 d ← (a ⊕ b) ≪ 16;
4 c ← c � d;
5 b ← (c ⊕ b) ≪ 12;
6 a ← a � b;
7 d ← (a ⊕ d) ≪ 8;
8 c ← c � d;
9 b ← (c ⊕ b) ≪ 7;

10 return a, b, c, d

r Rounds 0 1 2 .. 15

Add

Updated State

0 1 2 .. 15

 Initial State

KeyStream64-byte

c c c c

k k k k

k k k k

b b n n

c c c c

k k k k

k k k k

b b n n

Diagonal
Quarter Round

Column
Quarter Round

Colors: represent the 4 words in a round

k: key
c: constant b: blockcounter

n: nonce

column & diagonal
alternative rounds

Fig. 5: Illustration of ChaCha stream cipher.

exchange protocols such as Diffie Hellman [66]. Fig. 5 shows
ChaCha block function and the arrangement of the column
and the diagonal rounds.

2) Data Mixing (DM): is a simple mixing function that
provides security and randomness to its input. It consists
of bitwise exclusive-or (XOR) operation and a lookup table
mapping. The input to DM function is a 12-bit one-time
pad, which is taken from OPG, and a 12-bit device ID Di .
First, DM performs an XOR operation between Sr and Di to
produce a 12-bit table entry sequence Ts . The XOR operation
is computationally cheap and fast approach to scramble the
input data. Given an XORed bit, the probability that the input
bit is equal to 0 or 1 is 0.5. As such, the security of bitwise
operation output strongly depends on the randomness of key
stream X . That is, the table entry, which is the result of Sr⊕Di ,
should not reveal any information to an attacker about the
device ID.

Subsequently, Ts is used in a lookup table T to output a 12-
bit value, which represents the 12 least significant bits (LSB)
of the IPID, denoted as IPID base value IPIDb . Here, the
table consists of 4, 096 entries, each of which has 12 bits. In
particular, each table entry is associated with a unique 12-bit
decimal value as its output IPIDb . To speed up the process
of mapping a table entry into IPIDb , indexing is used instead
of conventional matching. Indexing requires a single memory
access and has a constant hit time (i.e., time required to find a
bit sequence). To implement index mapping, the lookup table
entries are sorted and used as the index for the respective
IPIDb . In other words, the result of the XOR operation is an
index pointing to an IPIDb .

3) Distribution Corrective Mechanism (DCM): is a plat-
form specific function combined with OPG and DM to gener-
ate IPID values. The generated IPID values will comply with
the IPID distribution of the platform’s operating system. This
is to ensure high undetectability of the hidden information.
DCM is based on UNIX IPID generation, which is used in the
Darwin v.16.3.0. As stated, IPID generation algorithms exploit
one of the IPID generation mechanisms presented in Table I.
In UNIX-based systems, such as Darwin and OpenBSD, IPID
values are randomly generated. In fact, these systems display
distributions that are different from uniform random distribu-
tion. This is due to the searchable queue implementation which
compromises between IPID predictability and IPID collision
avoidance [67]. DCM is designed as a selector for compliant
IPID values. The remaining 4 MSB of the full IPID field are
utilized to generate 16 IPID candidates to prevent reusing the
same IPID within a searchable queue. The searchable queue is
utilized to store recently used IPIDs. The size of the queue is
212, which provides a good tradeoff between randomness and
non-repetition while taking performance into account [67]. The
following steps and Algorithm 2 details the encoding process
of IPID-based HiAuth.

Algorithm 2: IPID-based HiAuth Encoding Algorithm
Input: key k, counter b, nonce n, 12-bit Di and lookup

table T , where length of T = 212

Output: The IPID to be used
1 ChaCha initialization
2 X ← init(k, b, n) //only once

3 Generate 12-bit sequence using ChaCha
4 X ′ ← X //state working copy

5 X ′ ← quarter-rounds
6 X ← X � X ′

7 Sr ← 12-bit MSB X //one-time pad

8 eXclusive OR
9 Ts ← Sr ⊕ Di //table entry

10 Perform table lookup
11 IPIDb ← return result //IPID base value

12 Generate IPID options
13 for each combination in a 4-bit sequence do
14 IPIDChoice ← 4-bit sequence ‖ IPIDb

15 IPID Selection
16 while IPIDChoice in queue do
17 choose another IPIDChoice

18 append IPIDChoice to queue

19 Correct the IPID generation
20 if queue size > 4096 then
21 pop the first queue element

22 return IPID

Step 1: Configure the one-time pad generator by initializing
ChaCha.

Step 2: Assign a switch ID to identify the switch.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

8

IPID

Function 3
Correct

+

Switch ID (Di)

12-bit sequence

LookUp

XOR

Function 2
Mix Data

12-bit pad

KeyStream
(64-byte)

Function 1
Generate One-time

Pad

Function 3
De-correct

+

Switch ID (Di)

12-bit sequence

LookUp

SrXOR

Function 2
De-mix Data

101010010101101
1111111100010
1010100101013663
101110010001321
111010010101934

….…

0001100100011186

….…

IPIDb Ts

Lookup Table
(T)

ChaCha
Function

12-bit pad

KeyStream
(64-byte)

Function 1
Generate One-time

Pad

Ts

IPIDb

Sr

Ts

IPIDb

IPID

Channel

16-bit 16-bit

Decoding Process
(SDN-Controller Side)

Encoding Process
(OF-Switch Side)

key (k)
counter (b)
nonce (n)

key (k)
counter (b)
nonce (n)

st
at

e ChaCha
Function st

at
e

Fig. 6: IPID-based HiAuth

Step 3: Obtain one-time pad from ChaCha key stream.
Step 4: XOR the Di and the Sr obtained from Step 2 and

Step 3.
Step 5: Map the obtained 12-bit sequence Ts to an IPIDb

value by using the lookup table.
Step 6: Append the remaining 4 bits to IPIDb to obtain 16

IPID candidates.
Step 7: Utilize the frist-in-first-out (FIFO) queue to store the

used IPID value.
Step 8: Select an IPID value randomly from the 16 IPID

candidates
Step 9: Check if the selected IPID is recently used. That is,

the selected IPID is used if it does not exist in the
queue; otherwise, repeat Step 8.

Step 10: Pop out the first IPID value if the queue size exceeds
212.

Step 11: Repeat Step 3 to Step 10 for every packet-In message
transmission.

The decoding process verifies the identity of a device by
reversing the encoding process. Fig. 6 illustrates the IPID-
based HiAuth encoding and decoding processes.

4) IP Fragmentation Handling: All the existing works on
IPID information hiding are only operational when the MTU
is known. They also assume that the MTU will not change
along the communication path. Nevertheless, this assumption
may not be valid since the communication path may change for
the same session. Here, we suggest two solutions to mitigate
the effect of IP fragmentation on IPID-based HiAuth.

• Fragmentation header monitoring - IP header contains
fragmentation related fields including 3-bit flag and 13-
bit fragment offset. These fields can be collaboratively
utilized to detect IP fragmentation and perform packet
reassembly. In particular, the more fragment flag can

indicate the existence of fragments whereas fragment
offset indicates the part of the original packet which is
carried in the fragment.

• Application-level solution - IPID-based HiAuth encoding
functions yield randomness in the generated IPID values.
In particular, OPG produces a stream of pseudo random
pads to scramble the device ID in DM. Eventually, DCM
ensures a sufficiently long period before repeating IPID
values in consecutive packets. IPID-based HiAuth can
include a mechanism to handle duplication as part of its
implementation.

B. XID-based HiAuth

While IPID-based can provide packet authentication at
the network layer, the following scenarios might render the
authentication obsolete:
• IPv4 specification update: in the case if the IPv4 spec-

ification gets updated to more closely match IPv6 [61].
In IPv6, IPID field will only be available in fragmented
packets [68].

• Transition to IPv6: in the case if IPv4 becomes obsolete
when a full transition to IPv6 occurs. In fact, the transition
from IPv4 to IPv6 is very challenging and will take very
long especially with techniques such as network address
translation and classless inter-domain routing.

In such scenarios, XID-based HiAuth can provide the same
level of authentication. To the best of our knowledge, XID-
based HiAuth is the first work that exploits XID for two pur-
poses, facilitating message pairing and providing side channel
communication.

XID is a 32-bit OpenFlow protocol header field which
stands for transaction identifier. The main purpose of XID is to
match synchronous control messages. That is, a synchronous

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

9

Function 1
Generate One-time

Pad

32-bit pad

KeyStream
(64-byte)

Function 2
Mix Data

+

Switch ID
32-bit sequence

XOR

Function 1
Generate One-time

Pad

32-bit pad

KeyStream
(64-byte)

Function 2
De-Mix Data

+

Switch ID
32-bit sequence

XOR

XID XID

Channel

Sr Sr

Decoding Process
(SDN-Controller Side)

Encoding Process
(OF-Switch Side)

ChaCha
Functionst

at
e (k)

(b)
(n)

ChaCha
Function st

at
e (k)

(b)
(n)

Fig. 7: XID-based HiAuth

reply message, such as packet-Out, will contain identical XID
value as the one used in packet-In message. Hence, a switch
requesting for routing information from the controller can
differentiate multiple replies and match each reply to its corre-
sponding request. In OpenFlow, the generation mechanism for
XID is not described. Thus, the controller vendors can freely
implement its generation algorithm as long as it serves its
designed purpose. For instance, Ryu SDN controller utilizes
a Python module, which implements pseudo-random number
generator (i.e., random.randint), to generate XID values. Be-
cause XID is generated with a uniform distribution, XID-based
HiAuth does not include any corrective mechanism to alter the
generated distribution. Therefore, the encoding and decoding
processes consist of the two functions namely OPG and DM.

Similarly, OPG exploits ChaCha to provide key stream for
XID generation. In contrast to IPID-based HiAuth, XID-based
HiAuth extracts 32-bit pad Sr from the key stream to be used
in the data mixing function. A 32-bit device ID Di is XORed
with Sr in the DM function. The output of DM is then used as
an XID value for the control channel packet. Here, the lookup
table is removed to keep the computation and storage cost as
low as possible. In fact, the absence of the lookup table in data
mixing function does not weaken the security of this HiAuth
variant since the length of pad is long enough. Fig. 7 shows
the encoding and the decoding processes of the XID-based
HiAuth.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the undetectability and the
performance of proposed schemes. In particular, the unde-
tectability analysis shows the ability of HiAuth to withstand
anomaly detection. Furthermore, the performance analysis
includes overhead evaluation and the ability of HiAuth to drop
attack packets. The IPID and XID values will be evaluated
against those generated by a UNIX-based operating system
and Ryu SDN controller, respectively. Table II shows the
settings used in our experiments.

A. IPID-based HiAuth Undetectability

The IPv4 IPID field is 16-bit in length and can be assigned
any value between 0 and 216 − 1 in decimal representation.
This range of values is sufficient to uniquely identify packets
in a communication session for a reasonable period of time. In

TABLE II: Experiments settings

Setting type Parameter Value

Common
settings

key size 256-bit
nonce size 64-bit
counter size 64-bit
queue & table size 40961

correction bits 4-bit1
No. of rounds 20
sample size 65536

Undetectability IPID value [0, (216 − 1)]
analysis XID value [0, (232 − 1)]

Histogram mode count1/ probability2

Overhead
analysis

TLS version 1.0
TLS record layer TLSv1.2
encryption 3DES
authentication SHA-1
key exchange RSA
CPU Intel Core i7
Ryu v4.27

DoS
mitigation

Mininet version 2.2.1
attack rate 0 - 300 (packet_in/s)
http request rate 500 (request/s)
test duration 60s

1 IPID-based HiAuth specific 2 XID-based HiAuth specific

general, information hiding schemes are evaluated in terms of
capacity, robustness and undetectability. For channel capacity,
the IPID-based HiAuth can offer a maximum of 12 bits per
packet. This translates into 4, 096, and is the number of devices
that a network administrator can identify within the network
when using IPID-based HiAuth. For being robust to alteration,
HiAuth relies on the services provided by the upper-layer
protocols for error checking and reliable transmissions, such
as TCP in the case of OpenFlow protocol.

For undetectability, we compare four implementations,
namely a) original UNIX-based platform IPID, Darwin 16.3.0,
b) PDE IPID, c) EDE IPID, and d) HiAuth IPID. Visual
benchmarking methods, including scatter, histogram, and repe-
tition plots, are utilized in our evaluation. Here, each resulting
IPID sample is compared to the original sample. To reproduce
similar PDE results as in [29], English sentences in their
ASCII binary representation are directly embedded into the
IPID field. Since it is assumed that the IPID value is always
random in [30]–[33], we simulate their results by using a
pseudo random generator to produce uniform distribution.

Figs. 8(a)-(d) illustrate the original, PDE, EDE and HiAuth
IPID scatter plots, respectively. Here, the successive pairs of
the IPID values are plotted against each other. Let d and i
denote the IPID and its sequence number, respectively. The x-
axis represents an IPID value, while the y-axis represents the
successive IPID value in the captured sequence. That is, the
points (x, y) = (di, di+1) are plotted without connecting such
as (d1, d2), (d3, d4), (d5, d6) and so on. As demonstrated in
Fig. 8(b), it is almost effortless to identify patterns in the case
of PDE IPID which makes such methods easily detectable.
Note that the randomness of PDE follows the frequencies of
alphabets occurrence in English sentences (i.e., the ‘e’ highest
and ‘z’ the lowest). On the contrary, the remaining samples
are evenly distributed and display near zero correlation with
no obvious patterns. This makes it difficult to distinguish the
ordinary IPID traffic from the IPID values generated by the
other information hiding methods.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

10

0 2 4 6
IPID Variable (di) ×104

0

2

4

6

IP
ID

V
ar

ia
bl

e
(d
i+

1)
×104

(a) Original IPID scatter plot

2 4 6
IPID Variable (di) ×104

2

4

6

IP
ID

V
ar

ia
bl

e
(d
i+

1)

×104

(b) PDE IPID scatter plot

0 2 4 6
IPID Variable (di) ×104

0

2

4

6

IP
ID

V
ar

ia
bl

e
(d
i+

1)

×104

(c) EDE IPID scatter plot

0 2 4 6
IPID Variable (di) ×104

0

2

4

6

IP
ID

V
ar

ia
bl

e
(d
i+

1)

×104

(d) HiAuth IPID scatter plot

0 2 4 6
IPID Value (216) ×104

0

2

4

6

8

10

C
ou

nt

(e) Original IPID histogram plot

0 2 4 6
IPID Value (216) ×104

0

2

4

6

8

10

C
ou

nt

(f) EDE IPID histogram plot

0 2 4 6
IPID Value (216) ×104

0

2

4

6

8

10

C
ou

nt

(g) HiAuth IPID histogram plot

0 1 2 3 4 5 6 7 8
Repetition

0

1

2

3

N
um

b
er

of
IP

ID
s

×104

(h) Original IPID repetition plot

0 1 2 3 4 5 6 7 8
Repetition

0

1

2

3

N
um

b
er

of
IP

ID
s

×104

(i) EDE IPID repetition plot

0 1 2 3 4 5 6 7 8
Repetition

0

1

2

3

N
um

b
er

of
IP

ID
s

×104

(j) HiAuth IPID repetition plot

Fig. 8: Undetectability analysis

Next, we utilize histogram plots to analyze the uniformity
of the IPID distributions. Figs. 8(e)-(g) show the histograms
of the original, EDE and HiAuth IPID values. The x-axis
represents the IPID values, while the y-axis represents the
frequency of the respective IPID value. Here, the sample size
is equal to 216, for which each IPID value occurs fairly at
least once. Also, the histogram bin size is chosen to be 216 to
represent the count of each value in the sample.

When the original IPID is compared to the EDE IPID (see
Figs. 8(e)-(f)), the frequencies of the EDE IPID traffic differ
from those of the original IPID traffic. For instance, the highest
count of an IPID in the original and HiAuth IPID samples is
seven, while the highest count of the EDE IPID values is nine.
Also, the number of the IPID values with count six is much
higher than what can be seen in Fig. 8(e). In contrast, HiAuth
IPID histogram closely resembles the original IPID histogram
as suggested by the comparison in Figs. 8(e) and 8(g).

To distinctly observe the differences between original IPID
and EDE IPID, we evaluate the number of the incidences that
an IPID has occurred in a sample, which is called repetition
in this paper. Figs. 8(h)-(j) depict the repetition plots for

the implementations in comparison. The x-axis represents the
number of repetitions, while the y-axis represents the number
of IPID values associated with the respective repetition. Note
that in the case of Fig. 8(i), the number of IPID values that has
not occurred in the sample (x = 0) is much larger than that in
Figs. 8(h) and 8(j). Thus, histogram and repetition plots expose
the distribution differences between the EDE and original
IPID traffic. In contrast, HiAuth IPID values demonstrates
similar uniformity and repetition trends to the original IPID
values. Therefore, visual benchmarking suggests that HiAuth
outperforms the existing methods in terms of undetectability.

Clearly, the conventional IPID-based methods neglect the
purpose of the IPID. They fail to ensure a sufficiently long
period before repeating an IPID, and merely assume that the
IPID is always random. Because of this, it is fairly easy
to detect these methods if they are utilized in counter-based
IPID platform (e.g., Windows and Linux). Nonetheless, even
if they are utilized on platforms which manifest randomness,
repeating IPID values too soon can easily render the hidden
information compromised.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

11

0 1 2 3 4

XID Variable (di) #109

0

1

2

3

4

X
ID

V
ar

ia
b
le

(d
i+

1
)

#109

(a) Ryu XID traffic scatter plot

0 1 2 3 4

XID Value (232) #109

0

5

10

15

20

25

P
ro

b
ab

il
it
y

#10!3

(b) Ryu XID traffic histogram plot

-2 0 2 4 6 8 10 12

Repetition

0

2

4

6

8

10

12

14

N
u
m

b
er

of
X

ID
s

#106

(c) Ryu XID traffic repetition plot

0 1 2 3 4

XID Variable (di) #109

0

1

2

3

4

X
ID

V
ar

ia
b
le

(d
i+

1
)

#109

(d) HiAuth XID traffic scatter plot

0 1 2 3 4

XID Value (232) #109

0

5

10

15

20

25

P
ro

b
ab

il
it
y

#10!3

(e) HiAuth XID traffic histogram plot

-2 0 2 4 6 8 10 12

Repetition

0

2

4

6

8

10

12

14

N
u
m

b
er

of
X

ID
s

#106

(f) HiAuth XID traffic repetition plot

Fig. 9: Undetectability Analysis of XID-based HiAuth.

B. XID-based HiAuth Undetectability

The XID field of OpenFlow protocol is 32-bit long and can
be any value between 0 and 232 − 1. This range of values
is utilized as unique transaction identifier sto match request
messages to response messages. Similar to IPID, OpenFlow
does not describe how the XID value should be generated.
Because of that, XID value is randomly generated by SDN
vendors. Accordingly, HiAuth can utilize XID to provide 32
bits of authentication channel capacity. This capacity enables
network administrators to identify 4.3 × 109 devices when
using XID-based HiAuth. The disadvantage of using XID
for authentication is one-sided entity verification. In other
words, a single XID-based HiAuth mechanism can be used
to authenticate a switch to a controller, but not in the opposite
direction.

In our experiments, we evaluate HiAuth XID traffic against
the XID traffic generated by Ryu controller. Similar to the
IPID-based HiAuth, XID-based HiAuth is benchmarked by
using scatter plot for randomness and histogram as well as
repetition plots for distribution uniformity. Fig. 9 shows the
undetectability analysis of Ryu and HiAuth XID traffic. The
scatter plots in Figs. 9(a) and 9(d) demonstrate the randomness
of Ryu and HiAuth XID traffic, respectively. Successive pairs
of the XID values are plotted against each other. It is observed
that both results show randomness with near zero correlation.
Furthermore, Figs. 9(b) and (e) illustrate the histograms of Ryu
and HiAuth XID traffic, respectively. The x-axes represent the
value of the XID and the y-axes represent the probability of
the respective range of XID values. Both histograms show
fairly uniform distributions although there are some statistical

fluctuations due to the randomness. Finally, Figs. 9(c) and
(f) depict the repetition plots. From the figure, one can see
that HiAuth XID traffic resembles the randomness and the
statistical distribution of Ryu XID traffic.

C. Performance Analysis
The latency of TCP handshake process with different im-

plementation is analyzed to evaluate the imposed overhead.
For this experiment, we implement a client-server software
for plain TCP, TCP with HiAuth (both ChaCha and RC4)
and TCP with TLS (see Fig. 10(a)). The evaluation is carried
out on physical hardware instead of virtual machines to avoid
emulation overhead. Table II shows the details of the software
and hardware used for this experiment. Here, the x-axis
represents the number of handshake samples while the y-axis
shows the respective latency in seconds. The results suggest
that HiAuth is lightweight and does not introduce obvious
overhead.

The ultimate goal of HiAuth is to drop unauthorized control
packets. To establish this, we implement IPID-based HiAuth
proof-of-concept which runs on forwarding devices in Mininet
and Ryu SDN controller. The experimental setup consists of
an SDN controller, DoS attacker, two OpenFlow switches and
three hosts connected as showing in Fig. 10(b). To avoid
causing DoS due to bandwidth saturation, each one of the
switches as well as the attacker has a separate control channel
that connects to the controller. This way, the evaluation will
only reflect the impact on the controller resources.

Provided that the controller and the switches are synchro-
nized (in terms of key stream generation), legitimate messages
will be allowed and attack messages will be dropped. We

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

12

10 20 30 40 50
Handshake Sessions

0.0

0.1

0.2

0.3

0.4

L
at

en
cy

(s
ec

)

TCP-Plain

TCP-HiAuth-RC4

TCP-HiAuth-ChaCha

TCP-TLS

(a) Overhead

S1 S2

SDN
Controller

H3H2H1

httperf
http
server

ping

HTTP1.1

(b) Expt. setup for (c)-(d)

240 260 280 300
Attack Rate (packet in/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L
at

en
cy

(m
s)

×103

without HiAuth

with HiAuth

(c) Host reachability

0 100 200 300
Attack Rate (packet in/s)

0

100

200

300

400

R
ep

ly
R

at
e

(r
ep
li
es
/s

)

without HiAuth

with HiAuth

(d) Web server performance

Fig. 10: Performance analysis

demonstrate HiAuth ability to mitigate outsider DoS attack
by two sets of experiments, namely hosts reachability using
ping test and web server reply rate using httperf tool. It is
important to note that, adding flow rules to the switches is
disabled to stimulate legitimate mismatch events for perfor-
mance measurement. On one hand, a ping test between H1 and
H3 is performed to measure the latency during a DoS attack
with and without HiAuth, as shown in Fig. 10(c). The results
shows that with HiAuth, host reachability is maintained, while
the latency significantly increases as the controller gets pre-
occupied processing attack packets in the absence of HiAuth.
On the other hand, the reply rate of a web server running
on H1 is benchmarked by running httperf tool on H2. The
client of httperf sends 500 HTTP/1.1 request/s for 60 second
to the web server and reports the reply rate as a performance
metric. In Fig. 10(d), the x-axis represents the attack rate
in packet_in per second while the y-axis indicates the web
server respective replies per second. The results demonstrate
that without HiAuth, the controller fails to process legitimate
packet_in messages which renders the web server reply rate
to zero.

VII. DISCUSSIONS

A. Security

Unlike cryptography which protects data by scrambling,
information hiding protects data by concealing its very ex-
istence. In general, the use of information hiding techniques
is not publicly shared. The security of the hidden information
is based on the ability to stay undetected. HiAuth exploits this
opportunity to conceal control packet authentication. Although
the k and n in the OPG and the Di in the data mixing
function are the same throughout the authentication process,
the combination of HiAuth three components will always
ensure to produce values, which comply with the original IPID
and XID values.

B. Usability and computational complexity

One of HiAuth primary advantages is its adoption simplic-
ity. As described in Section III, SDN vendors may not support
TLS because of its complexity and the usability challenges.
On the contrary, HiAuth configuration is straightforward. To
configure HiAuth, network administrators will only need to set
few parameters, namely k, b, n and Di . Additionally, HiAuth
is completely transparent to application layer. It requires

replacing the generator for the IPID or XID (IP layer or TCP
layer) values depending on the scheme used.

In terms of computational complexity, HiAuth only perform
arithmetic operations on the fix-sized data. The XOR operation
scrambles the unique IDs and creates a randomized table
entry. The lookup table, in the case of IPID-based HiAuth,
involves performing an indexed search through an array of
size 212. Also, the one-time pads can be pre-computed before
receiving packets, resulting in a speedy identity verification.
As compared to TLS, HiAuth is lightweight because it does
not require dedicated hardware for its computations.

C. Limitations

In Section III, we presented four DoS attack scenarios in
which outsider class, in particular scenarios (a) and (b), can
be easily mitigated by HiAuth. However, neither HiAuth nor
TLS can prevent scenarios (c) and (d) since an attacker can
utilize an authenticated switch to launch the attack. This is a
limitation of HiAuth which we leave for future extension.

D. Suggested Security Enhancement

To improve the security of HiAuth, we recommend the
following actions:
• Frequent table permutation: Table permutation can be

performed after a certain number of packet transmissions.
This will increase the resistivity against the brute force
attacks.

• Limited number of authentication attempts: It is also
possible to limit the number of authentication attempts
within a specified period of time to ensure that guess
attempts will take long time.

• Blacklisting: Blacklisting approach can be added to pre-
vent brute-force attack to obtain the secret key.

• Platform utilization: Utilize the proposed mechanism in
operating systems and controllers that randomly generate
IPID and XID values to avoid being detected by attackers.

VIII. CONCLUSIONS AND FUTURE WORK

Because of SDN centralization nature, DoS attacks become
a crucial security issue. Unfortunately, there has been a
widespread failure to adopt TLS in SDN control channel due to
its configuration complexity and lack of standard enforcement.
In this paper, we present a lightweight authentication solution,

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

13

called Hidden Authentication (HiAuth), to protect the SDN
controller against DoS by hiding the identities of the for-
warding devices into the control packets via efficient bitwise
operations. HiAuth is the first to incorporate information
hiding techniques into OpenFlow to provide security against
DoS attacks. The experimental results show that HiAuth can
effectively mitigate outsider DoS attacks and provide high
undetectability to attackers. Some interesting research topics
can be extended from this work, such as using information
hiding to mitigate distributed DoS and insider DoS attacks.

REFERENCES

[1] Z. Cao, S. S. Panwar, M. Kodialam, and T. Lakshman, “Enhancing mo-
bile networks with software defined networking and cloud computing,”
IEEE/ACM Transactions on Networking, 2017.

[2] M. Huang, W. Liang, Z. Xu, and S. Guo, “Efficient algorithms for
throughput maximization in software-defined networks with consoli-
dated middleboxes,” IEEE Transactions on Network and Service Man-
agement, vol. 14, no. 3, pp. 631–645, 2017.

[3] J. Chase, R. Kaewpuang, W. Yonggang, and D. Niyato, “Joint virtual
machine and bandwidth allocation in software defined network (SDN)
and cloud computing environments,” in IEEE International Conference
Communications (ICC), pp. 2969–2974, 2014.

[4] Y.-J. Chen, L.-C. Wang, F.-Y. Lin, and B.-S. P. Lin, “Deterministic qual-
ity of service guarantee for dynamic service chaining in software defined
networking,” IEEE Transactions on Network and Service Management,
vol. 14, no. 4, pp. 991–1002, 2017.

[5] Y.-J. Chen, F.-Y. Lin, L.-C. Wang, and B.-S. Lin, “A dynamic security
traversal mechanism for providing deterministic delay guarantee in
SDN,” in World of Wireless, Mobile and Multimedia Networks (WoW-
MoM), 2014 IEEE 15th International Symposium on a, pp. 1–6, IEEE,
2014.

[6] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in IEEE 35th Conference on Local
Computer Networks (LCN), 2010.

[7] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking, 2013.

[8] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assess-
ment,” in Proceedings of the second ACM workshop on Hot topics in
software defined networking, 2013.

[9] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security
policies,” IEEE Communications Magazine, vol. 44, no. 3, pp. 134–141,
2006.

[10] S. J. Vaughan-Nichols, “OpenFlow: The next generation of the net-
work?,” IEEE Computer, vol. 44, no. 8, pp. 13–15, 2011.

[11] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in soft-
ware defined networks: A survey,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

[12] Opendaylight, “Defense4all: SDN application for detecting and driving
mitigation of DoS and DDoS attacks.” OpenDaylight technical work-
stream, 2013.

[13] Y.-J. Chen, L.-C. Wang, and C.-H. Liao, “Eavesdropping prevention for
network coding encrypted cloud storage systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 8, pp. 2261–2273, 2016.

[14] W. Mazurczyk and L. Caviglione, “Information hiding as a challenge
for malware detection,” IEEE Security & Privacy, vol. 13, no. 2, pp. 89
– 93, 2015.

[15] W. Mazurczyk and L. Caviglione, “Steganography in modern smart-
phones and mitigation techniques,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 334–357, 2015.

[16] J.-M. Guo, G.-H. Lai, K. Wong, and L.-C. Chang, “Progressive halftone
watermarking using multilayer table lookup strategy,” IEEE Transactions
on Image Processing, vol. 24, no. 7, pp. 2009–2024, 2015.

[17] B. Jankowski, W. Mazurczyk, and K. Szczypiorski, “Padsteg: Introduc-
ing inter-protocol steganography,” Telecommunication Systems, vol. 52,
no. 2, pp. 1101–1111, 2013.

[18] W. Mazurczyk, M. Karaś, and K. Szczypiorski, “Skyde: A skype-
based steganographic method.,” International Journal of Computers,
Communications & Control, vol. 8, no. 3, 2013.

[19] O. I. Abdullaziz, V. T. Goh, H.-C. Ling, and K. Wong, “AIPISteg:
An active IP identification based steganographic method,” Journal of
Network and Computer Applications, vol. 63, pp. 150–158, 2016.

[20] L. Caviglione, M. Podolski, W. Mazurczyk, and M. Ianigro, “Covert
channels in personal cloud storage services: The case of Dropbox,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1921–1931,
2017.

[21] N. F. Johnson, Z. Duric, S. Jajodia, and N. Memon, “Information hid-
ing: Steganography and watermarking - attacks and countermeasures,”
Journal of Electronic Imaging, vol. 10, no. 3, pp. 825–826, 2001.

[22] O. I. Abdullaziz, V. T. Goh, H.-C. Ling, and K. Wong, “Network packet
payload parity based steganography,” in IEEE Conference on Sustainable
Utilization and Development in Engineering and Technology (CSUDET),
2013.

[23] L. Ji, W. Jiang, B. Dai, and X. Niu, “A novel covert channel based on
length of messages,” in IEEE International Symposium on Information
Engineering and Electronic Commerce, 2009.

[24] S. Zander, G. J. Armitage, and P. Branch, “An empirical evaluation of
IP time to live covert channels,” in 15th IEEE International Conference
on Networks, 2007.

[25] O. Arkin and J. Anderson, “Etherleak: Ethernet frame padding informa-
tion leakage,” 2003.

[26] W. Mazurczyk, M. Smolarczyk, and K. Szczypiorski, “Retransmission
steganography and its detection,” Soft Computing, vol. 15, no. 3,
pp. 505–515, 2011.

[27] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels:
Design and detection,” in ACM Proceedings of the 11th Conference on
Computer and Communications Security, 2004.

[28] J. Postel, “Internet protocol.” RFC791, 1981.
[29] C. H. Rowland, “Covert channel in the TCP/IP protocol suite,” First

Monday: Peer-reviewed Journal on the Internet, vol. 2, no. 5, 1997.
[30] K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in Workshop

on Multimedia Security at ACM Multimedia, 2002.
[31] B. Xu, J.-Z. Wang, and D.-Y. Peng, “Practical protocol steganography:

Hiding data in IP header,” in IEEE Asia International Conference on
Modelling & Simulation, 2007.

[32] D. Dhobale, V. Ghorpade, B. Patil, and S. Patil, “Steganography by
hiding data in TCP/IP headers,” in IEEE 3rd International Conference
on Advanced Computer Theory and Engineering (ICACTE), 2010.

[33] R. M. Goudar, S. J. Wagh, and M. D. Goudar, “Secure data transmission
using steganography based data hiding in TCP/IP,” in ACM Proceedings
of the International Conference and Workshop on Emerging Trends in
Technology, 2011.

[34] S. J. Murdoch and S. Lewis, “Embedding covert channels into TCP/IP,”
in Springer Proceedings of the 7th International Conference on Infor-
mation Hiding, 2005.

[35] R. Hu, Y. Qian, H.-H. Chen, and H. Mouftah, “Cyber security for smart
grid communications: Part I,” IEEE Communications Magazine, vol. 50,
no. 8, 2012.

[36] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl, “I have no
idea what i’m doing - on the usability of deploying HTTPS,” in Proc.
of the 26th USENIX Security Symposium, vol. 17, pp. 1339–1356, 2017.

[37] S. Fahl, Y. Acar, H. Perl, and M. Smith, “Why eve and mallory (also)
love webmasters: A study on the root causes of SSL misconfigurations,”
in Proceedings of the 9th ACM symposium on Information, computer and
communications security, pp. 507–512, ACM, 2014.

[38] Floodlight-developers, “TLS support,” 2018.
[39] S. Qualys, “SSL server test,” 2014.
[40] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field

study of browser security warning effectiveness.,” in USENIX security
symposium, vol. 13, 2013.

[41] M. Harbach, S. Fahl, P. Yakovleva, and M. Smith, “Sorry, i don’t get it:
An analysis of warning message texts,” in International Conference on
Financial Cryptography and Data Security, pp. 94–111, Springer, 2013.

[42] M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,”
Journal of Computer Security, vol. 15, no. 1, pp. 39–68, 2007.

[43] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in ACM Proceedings of the second workshop on Hot
topics in software defined networking, 2013.

[44] W. Wang, J. McNair, and J. Xie, Authentication and Security Protocols
for Ubiquitous Wireless Networks. Book Chapter of Ambient Intel-
ligence, Wireless Networking, and Ubiquitous Computing, Athanasios
Vasilakos and Witold Pedrycz, Eds. Artech House, 2006.

[45] J. M. Dover, “A denial of service attack against the Open Floodlight
SDN controller.” Research report, 2013.

[46] O. I. Abdullaziz, Y.-J. Chen, and L.-C. Wang, “Lightweight authentica-
tion mechanism for software defined network using information hiding,”
in IEEE Global Communications Conference (GLOBECOM), 2016.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2909116, IEEE
Transactions on Network and Service Management

14

[47] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 602–622,
2016.

[48] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
scalable and vigilant switch flow management in software-defined net-
works,” in ACM Conference on Computer & communications security,
2013.

[49] M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran,
“LineSwitch: Tackling control plane saturation attacks in software-
defined networking,” IEEE/ACM Transactions on Networking, vol. 25,
no. 2, pp. 1206–1219, 2017.

[50] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS attack prevention ex-
tension in software-defined networks,” in IEEE/IFIP 45th International
Conference on Dependable Systems and Networks (DSN), 2015.

[51] M. Kuerban, Y. Tian, Q. Yang, Y. Jia, B. Huebert, and D. Poss,
“FlowSec: Dos attack mitigation strategy on sdn controller,” in IEEE In-
ternational Conference on Networking, Architecture and Storage (NAS),
2016.

[52] S. Lim, S. Yang, Y. Kim, S. Yang, and H. Kim, “Controller scheduling
for continued SDN operation under DDoS attacks,” Electronics Letters,
vol. 51, no. 16, pp. 1259–1261, 2015.

[53] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: An SDN-
based lightweight countermeasure for TCP SYN flooding attacks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 2,
pp. 487–497, 2017.

[54] T. Wang and H. Chen, “SGuard: A lightweight SDN safe-guard architec-
ture for DoS attacks,” China Communications, vol. 14, no. 6, pp. 113–
125, 2017.

[55] L. Wei and C. Fung, “FlowRanger: A request prioritizing algorithm
for controller DoS attacks in software defined networks,” in IEEE
International Conference on Communications (ICC), pp. 5254–5259,
2015.

[56] G. Yao, J. Bi, and L. Guo, “On the cascading failures of multi-controllers
in software defined networks,” in IEEE 21st International Conference
on Network Protocols (ICNP), 2013.

[57] D. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems.
Cambridge University Press, 1990.

[58] J. Mogul and S. Deering, “Path MTU discovery.” RFC 1191, 1990.

[59] A. Householder, A. Manion, L. Pesante, and G. M. Weaver, “Managing
the threat of denial-of-service attacks,” CMU Software Engineering
Institute CERT Coordination Center, 2001.

[60] M. Mathis and J. Heffner, “Packetization layer path MTU discovery.”
RFC 4821, 2007.

[61] J. Touch, “Updated specification of the IPv4 ID field.” RFC6864, 2013.

[62] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop Record of
SASC, vol. 8, pp. 3–5, 2008.

[63] E. Bursztein, “Speeding up and strengthening HTTPS connections for
chrome on android,” 2018.

[64] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,”
tech. rep., 2018.

[65] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[66] W. Diffie, P. C. Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs, Codes and Cryptography, vol. 2,
no. 2, pp. 107–125, 1992.

[67] Apple Inc., “IP ID generation is a fascinating topic,” 2017.

[68] R. Hinden, “Internet protocol version 6 (IPv6) specification,” 2017.

Osamah Ibrahiem Abdullaziz received the B.S.
and M.Eng.Sc. degrees from Multimedia University,
Malaysia in 2011 and 2015, respectively. He is cur-
rently a Ph.D. candidate at the department of Elec-
trical Engineering and Computer Science, National
Chiao Tung University, Taiwan. His current research
interests include software defined networks, multi-
access edge computing, virtualization and network
information hiding.

Li-Chun Wang (M’96 – SM’06 – F’11 received the
B.S. degree from National Chiao Tung University,
Taiwan, R.O.C. in 1986, the M.S. degree from
National Taiwan University in 1988, and the Ms.
Sci. and Ph. D. degrees from the Georgia Institute
of Technology , Atlanta, in 1995, and 1996, respec-
tively, all in electrical engineering.

From 1990 to 1992, he was with the Telecommu-
nications Laboratories of Chunghwa Telecom Co. In
1995, he was affiliated with Bell Northern Research
of Northern Telecom, Inc., Richardson, TX. From

1996 to 2000, he was with AT&T Laboratories, where he was a Senior
Technical Staff Member in the Wireless Communications Research Depart-
ment. Since August 2000, he has joined the Department of Electrical and
Computer Engineering of National Chiao Tung University in Taiwan and is
the current Chairman of the same department. His current research interests
are in the areas of radio resource management and cross-layer optimization
techniques for wireless systems, heterogeneous wireless network design, and
cloud computing for mobile applications.

Dr. Wang won the Distinguished Research Award of National Science
Council, Taiwan in 2012, and was elected to the IEEE Fellow grade in 2011
for his contributions to cellular architectures and radio resource management
in wireless networks. He was a co-recipient(with Gordon L. Stuber and Chin-
Tau Lea) of the 1997 IEEE Jack Neubauer Best Paper Award for his paper
“Architecture Design, Frequency Planning, and Performance Analysis for a
Microcell/Macrocell Overlaying System," IEEE Transactions on Vehicular
Technology, vol. 46, no. 4, pp. 836-848, 1997. He has published over 200
journal and international conference papers. He served as an Associate Editor
for the IEEE Trans. on Wireless Communications from 2001 to 2005, the
Guest Editor of Special Issue on "Mobile Computing and Networking" for
IEEE Journal on Selected Areas in Communications in 2005, "Radio Resource
Management and Protocol Engineering in Future Broadband Networks" for
IEEE Wireless Communications Magazine in 2006, and "Networking Chal-
lenges in Cloud Computing Systems and Applications," for IEEE Journal on
Selected Areas in Communications in 2013, respectively. He is holding 10
US patents.

Yu-Jia Chen received the B.S. degree and Ph.D.
degree in electrical engineering from National Chiao
Tung University, Taiwan, in 2010 and 2015, re-
spectively. He is currently an assistant professor
at the department of communication engineering in
National Central University. His research interests
include Internet of Things (IoT), wireless sensing,
and network security. Dr. Chen has published more
than 30 articles in peer-reviewed journal and con-
ference papers. He is holding three US patent and
three ROC patent.

