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Abstract—In mobile cloud computing, offloading resource-
demanded applications from mobile devices to remote cloud
servers can alleviate the resource scarcity of mobile devices,
whereas long distance communication may incur high communi-
cation latency and energy consumption. As an alternative, fortu-
nately, recent studies show that exploiting the unused resources
of the nearby mobile devices for task execution can reduce the
energy consumption and communication latency. Nevertheless, it
is non-trivial to encourage mobile devices to share their resources
or execute tasks for others. To address this issue, we construct
an auction model to facilitate the resource trading between the
owner of the tasks and the mobile devices participating in task
execution. Specifically, the owners of the tasks act as bidders
by submitting bids to compete for the resources available at
mobile devices. We design a distributed auction mechanism to
fairly allocate the tasks, and determine the trading prices of the
resources. Moreover, an efficient payment evaluation process is
proposed to prevent against the possible dishonest activity of
the seller on the payment decision, through the collaboration
of the buyers. We prove that the proposed auction mechanism
can achieve certain desirable properties, such as computational
efficiency, individual rationality, truthfulness guarantee of the
bidders, and budget balance. Simulation results validate the
performance of the proposed auction mechanism.

Index Terms—Mobile cloud computing, incentive mechanism,
auction, truthfulness, budget balance.

I. INTRODUCTION

While mobile devices have become increasingly ubiquitous
in our daily life, they are seriously constrained by limited
battery capacities [1]–[3] and computation capabilities [4]. To
alleviate resource scarcity of mobile devices, one effective
way is to offload their complex or resource-demanded tasks
to remote cloud [5]–[8] through pay as you go. However,
such an approach may suffer large internet delay and high
energy consumption, due to long distance communication
[9]–[11]. To address this issue, recent work proposes that
utilizing the unused resources of the mobile devices in the
proximity can achieve better system performance. For ex-
ample, communications among the nearby mobile devices
through WLAN/WiFi can significantly reduce the communica-
tion latency and network congestion [12]–[18]. Nevertheless,
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it is non-trivial to encourage mobile devices to share their
mobile resources or execute tasks for others, as these actions
may incur non-negligible inconvenience to themselves, e.g.,
performance degradation and battery outage.

In the literature, only a few works [17]–[21] have been
published on designing incentive schemes to incentivize mo-
bile devices to provide their unused resources or execute
tasks offloaded from others. Specifically, [17] proposes a
reputation-based economic incentive model to stimulate the
mobile devices to provide services with others. Based on the
rating points recorded for the devices, the winning bids can
then be selected. The work in [18] imposes a bill backlog on
each mobile device. When a device’s bill backlog is larger than
a threshold, it will be unable to get extra services from others.
Although the fairness of mobile devices can be achieved,
the mobile devices are always forced to provide services
to others, which might not be appealing to many mobile
devices. [19] constructs a Stackelberg game model to capture
the interaction between the owner of the tasks (i.e., buyer)
and the mobile devices that participate in task execution (i.e.,
sellers). By appropriately allocating the tasks and determining
the payments of task executions, the Stackelberg equilibrium
of the game can be achieved. Although this approach can
benefit both the buyer and the sellers of mobile resources,
it does not capture the preference of task execution. It is
worth noting that tasks executed on different mobile devices
may achieve different system performances, e.g., different
completion time and communication latency. Under such a
circumstance, different mobile devices should get different
payments for their task executions. Moreover, the model in
[19] considers only a single buyer of mobile resources, which
omits the competition among multiple buyers in a general
model. [21] proposes two truthful incentive mechanisms with
auctions, which however requires a centralized auctioneer to
make the auction decisions. It is particularly noted that the
centralized auctioneer must hold the global knowledge of the
mobile cloud system, which firstly is prone to expose the
privacy of mobile users, and secondly incurs high update cost
because of the dynamic nature of the smartphones.

Auction [22]–[26], a major trading scheme in economics,
has been widely used in many areas. By viewing the resource
trading system as an ecosystem, the auction mechanism aims
to appropriately address the conflicts between the buyer’s and
the seller’s interests, and the internal competitions among
themselves. Generally, the designed auction mechanism should
be able to fairly allocate the trading resources, determine the
price/payment of the buyer/seller, and guarantee the truthful-
ness of the information submitted by the bidders. In mobile
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cloud computing, task execution among mobile devices also
involves a resource trading between the owners of the tasks
and the mobile devices participating in task execution. To
capture the competition and conflict of task owners and
mobile devices, in this paper, we aim to design an auction
mechanism to solve the task assignment problem in mobile
cloud computing.

A lot of research efforts have been made on developing the
auction mechanisms in the literature [23]–[29]. For example,
Vickrey-Clarke-Groves (VCG) auction [24], [25] is a well-
known auction scheme to achieve the truthfulness of the
information submitted by the bidders. However, its truthfulness
is based on the optimal allocation of the resources, which
might be impossible since there is no computationally efficient
algorithms to solve NP-hard problems. The work in [27]
proposes an auction mechanism for crowdsourcing. However,
it assumes that each mobile device holds a set of predefined
services, and if one of its bids wins, all its predefined services
will be traded, even if some of them might be useless to the
tasks. Moreover, it does not consider the resource requirement
of running each task. [28], [29] study resource sharing for
cloudlet in mobile cloud computing, and design efficient auc-
tion mechanisms to guarantee the truthfulness of the bidders.
The proposed schemes conduct well in homogeneous systems,
where the amount of resources required by each buyer is
exactly the same as the amount of resources available at each
seller. Moreover, [28], [29] restrict the one-to-one resource
trading mode, which omits the fact that the resource-rich seller
(i.e., mobile device) can support multiple buyers of resources
in a practical mobile cloud system.

Compared with conventional schemes, the auction problem
designed in this paper is rather challenging, and has the
following differences: (1) the tasks to be considered require
different amounts of resources, and have heterogeneous prefer-
ences on their executors; (2) each resource-rich mobile device
can work on more than one task as long as it has enough
resources, which is the major difference from the existing one-
to-one resource trading schemes; (3) the auction decision is
locally made at each mobile device, which does not require a
centralized third-party auctioneer as in [28], [29]. Specifically,
we aim to design a distributed auction mechanism, which
efficiently captures the interaction between the owners of
the tasks and the mobile devices that can participate in task
executions. To ease presentation, we will use buyers and
sellers interchangeably with the owners of the tasks and the
mobile devices respectively for the rest of the paper. The main
contributions of this paper can be summarized as follows.

• We construct a distributed auction model, where the
buyers submit their bids to compete for the resources of
the sellers, while each seller, acted as auctioneer, locally
makes their auction decisions.

• We propose an auction mechanism to allocate the tasks to
the appropriate mobile devices, determine the price paid
for each task and the payment earned at each mobile
device. An efficient payment evaluation process is also
proposed to detect the possible dishonest activity of the
sellers on their decided payments.

• We prove that the proposed auction mechanism holds

TABLE I
MAIN NOTATIONS AND THEIR DESCRIPTIONS

B The set of mobile tasks to be considered, i.e., buyers
bi The i-th mobile task (i.e., buyer) in B
Bc

j The set of the winning buyer candidates of seller sj
Bw

j The set of final buyers that win bids at seller sj
Ci The bid vector submitted by buyer bi (or the owner of task)
ci,j The bid of buyer bi to seller sj for unit resource
m The total number of tasks in B, i.e., m = |B|
n The total number of mobile devices that can participate in task

execution, i.e., n = |S|
pbi The final price per unit resource, paid by bi
psj The payment gained by providing unit resource at sj
p̃j The minimum price per unit resource asked by sj
ri The amount of resources required to run task bi
Rj The total amount of resources available at device sj
S The set of mobile devices (i.e., sellers) that are willing to

participate in task execution
sj The j-th mobile device in S
Tj The least staying time of mobile device sj
vi,j The true value per unit resource that bi can get if it wins bid

from sj
Vi Vi = (vi,1, vi,2, · · · , vi,n), the truth valuation vector of bi
xi,j The variant to denote whether bi finally wins its bid at sj
x′
i,j The variant to denote whether bi is selected as one of the

winning buyer candidates of sj
Ub
i The utility achieved by buyer bi

Us
j The utility achieved by seller sj

certain desirable properties, such as computational ef-
ficiency, individual rationality, truthfulness, and budget
balance.

The rest of this paper is organized as follows. We describe
the system model and formulate the problem in Section II. In
Section III, we present and analyze the detailed algorithm to
solve the problem. Simulation results are given in Section IV.
Finally, we conclude the paper in Section V.

II. PROBLEM FORMULATION

In this section, we first introduce the auction model. Then,
we formulate the problem and present its desirable properties.
For easy understanding, the main notations used in this paper
are listed in Table II.

A. Auction Model

Consider a set of mobile applications/tasks, denoted as
B = {b1, b2, · · · , bm}, to be executed in a mobile cloud
system. Generally, running each mobile application requires
a certain amount of resources (CPU, memory, etc). We use
ri to denote the amount of resources required to run task
bi, where bi ∈ B. Let S = {s1, s2, · · · , sn} be the set of
resource-rich mobile devices in a mobile cloud system, which
are willing to participate in task execution for others if getting
satisfied payments. Specifically, we use Rj to denote the total
amount of resources available at sj . Suppose that p̃ is the
minimum price that must be paid if mobile device consumes
a unit resource for task execution. Such information can be
estimated as the minimum consumption cost of mobile device,
and provided by the system to avoid unfair competition, which
is shared by all the mobile devices and the owners of the tasks.
In other words, the overall amount of resources required by
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Fig. 1. A distributed auction model

the tasks executed at sj cannot exceed Rj , and the payment
per unit resource must be no less than p̃. Moreover, due to
the mobility nature, a mobile device may leave the system
or move to other places dynamically, which will significantly
affect the quality of services, such as task completion time.
As the staying time can usually be estimated by the owners
of the mobile devices, we use Tj to denote the least staying
time before device sj will leave the system, which is assumed
to be local information to device sj .

To capture the resource trading between the owners of
the tasks and the mobile devices, we construct a distributed
auction model, where the owners of tasks are the buyers of
resources, and the mobile devices in S are the sellers of
resources. Each buyer bi submits its bid privately to their
interested sellers, so that nobody has any knowledge of others.
Particularly, for each buyer, the bids to different sellers might
not be the same, i.e., the buyers may have different preferences
over the sellers. This is because, the tasks executed on different
mobile devices may achieve different system performances,
e.g., different execution time, communication latency [13]. As
such, for each buyer bi ∈ B, we use Ci = (ci,1, ci,2, · · · , ci,n)
to denote the bid vector submitted to the sellers, where ci,j
represents the price per unit resource that bi is willing to pay
to seller sj ∈ S. Moreover, each task gives the information of
execution time it expects, such that the selected executor can
complete it before leaving the system. Let ti be the minimum
time that task bi expects its executor to stay, which is sent
along the bid. It is also possible that a mobile device may
have more than one task for execution. In this context, multiple
virtual “buyers” can be added in the above distributed auction
model, where the number of virtual buyers equals the number
of tasks of the device. Each virtual buyer then represents a
task owning by that device, and makes trade with the sellers.

In our auction model, the mobile devices, which are the
sellers owning the mobile resources, also act as the auction-
eers. Fig. 1 illustrates the details of the auction process, which
includes the following five procedures:

• Each buyer first submits its bid to its preference sellers,
which specifies the amount of resources required, the
maximum price willing to pay per unit resource, and the
staying time requirement of its executor.

• After collecting the bids from the buyers, each auctioneer
(i.e., seller) locally determines the winning bid candidates

and the charge required to pay for each buyer.
• The auctioneer notifies the auction decision including the

winning bid candidates and the payment required, to the
buyers.

• Due to the distributed nature, the seller may cheat on the
payment decided by itself, so as to gain higher utility.
To address this issue, after getting the auction decision,
the buyers need to collaboratively evaluate whether the
auctioneer cheats on the decided payment. If detecting
cheating activity, the current auctioneer will be removed
from the set of the possible trading sellers at all the
buyers.

• As the buyer may win its bids at multiple sellers, it
chooses the final seller that it is willing to make trade
with, according to the defined criteria.

Note that the above distributed auction process can be
conducted round by round, until achieving satisfied system
efficiency.

B. Problem Formulation

Without loss of generality, we define the following variants:
• pbi : The price per unit resource charged by buyer bi;
• psj : The payment per unit resource that seller sj can get;
• xi,j : Let it be 1 if buyer bi wins its bid at seller sj ,

otherwise, let it be 0.
The auction mechanism must follow the following rules:
• The buyer bi is willing to win its bid at sj , only if the

price charged by it is no more than its bid ci,j , i.e.,

pbi ≤ ci,j , ∀bi ∈ B. (1)

• The seller sj can accept the bid from bi, only if the
payment it obtains is no less than the minimum price
p̃. That is,

psj ≥ p̃,∀sj ∈ S. (2)

• The overall amount of resources required by the buyers
that win the bids at sj , must be no more than the
maximum amount of resources available at sj , i.e.,

m∑
i=1

xi,jri ≤ Rj , ∀sj ∈ S. (3)

• Each buyer can only win its bid from at most one seller,
as executing task on multiple mobile devices will incur
extra migration cost, e.g., traffic incurred among mobile
devices. That is,

n∑
j=1

xi,j ≤ 1, ∀bi ∈ B. (4)

Let Vi = (vi,1, vi,2, · · · , vi,n) be the true valuation vector
of buyer bi, where vi,j denotes the true value per unit resource
that bi can obtain if it wins bid from sj . It is noted that such
true information is only known to the buyer itself, and because
of selfishness, it may submit untruthful information to gain
higher utility, e.g., ci,j ̸= vi,j . Then, following the above rules,
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we can define the utilities of the buyer bi and seller sj , denoted
as U b

i and Us
j respectively, as follows:

U b
i =

 n∑
j=1

xi,jvi,j − pbi

 ri, (5)

Us
j =

m∑
i=1

xi,jrip
s
j . (6)

As seen, if U b
i ≥ 0, it means that buyer bi is allocated to the

seller with a valuation no less than the charged price. On the
other hand, Us

j denotes the revenue earned at sj , by allocating
the resources to the buyers.

C. Auction Objectives

As described above, each seller (also acted as an auction-
eer) makes a local auction decision to determine the set of
the wining bid candidates, and the corresponding payments,
followed by the final seller selection at each selected buyer.
An efficient auction mechanism should satisfy the following
desirable properties:

• Computational Efficiency: The designed auction mecha-
nism should be able to get results with a polynomial time
complexity.

• Individual Rationality: The auction mechanism must
guarantee that each winning buyer pays no more than
its bid, and each seller gets no less than the minimum
price that it asks for.

• Truthfulness: The auction mechanism must be able to
guarantee that no bidder can improve its own utility
by submitting a bid different from its true valuation. In
other words, for ∀bi ∈ B, U b

i can be maximized only if
Ci = Vi. Furthermore, the proposed mechanism should
also guarantee the truthfulness of the sellers on their
payment decisions.

• Budget Balance: There must be no economic loss for each
auction round. That is, the expense that each auctioneer
charge all its winning buyers can afford the total payment
that the seller get, i.e.,

m∑
i=1

xi,jrip
b
i ≥

m∑
i=1

xi,jrip
s
j ,∀j. (7)

Targeting at the above properties, we design a distribut-
ed and efficient auction mechanism which is computational
tractable, individual rational, truthful, and budget balanced.

III. AUCTION MECHANISM DESIGN

In this section, we first introduce the detailed process of
each auction round, which includes making auction decisions
at each auctioneer, evaluating the payment decision with the
collaboration of buyers, and determining the final seller at
each buyer. Then, we use an example to illustrate how the
proposed mechanism works. Finally, we theoretically analyze
the properties of the mechanism.

Algorithm 1: Auction decision making process at sj
begin

x′
i,j = 0, psj = 0, pbi,j = 0 for ∀i, j;

Bj = {bi|ci,j ≥ p̃, ri ≤ Rj , ti ≤ Tj , ∀bi ∈ B};
sort the buyers in Bj into Bj = {bl1 , · · · , bl|Bj |} such
that cl1,j ≥ cl2,j ≥ · · · ≥ cl|Bj |,j ;
if
∑

bi∈Bj
ri ≤ Rj then

set x′
i,j = 1 for ∀bi ∈ Bj ;

set the price pbi,j = p̃ for ∀bi ∈ Bj , and psj = p̃;
end
if
∑

bi∈Bj
ri > Rj then

k = argmaxk

{∑k
k′=1 rlk′ ≤ Rj , ∀blk′ ∈ Bj

}
;

for ∀k′ ∈ {1, 2, · · · , k} do
set x′

lk′ ,j = 1, and pblk′ ,j = clk+1,j ;
end
set psj = clk+1,j ;

end
end

A. Auction Decision Making Process

The auction decision is made locally at each seller, i.e.,
auctioneer. We now use seller sj ∈ S as an example.

To ease presentation, we define x′
i,j = 1 if buyer bi

is chosen as one of the winning buyer candidates of sj ,
otherwise, x′

i,j = 0. According to Eq. (1) and Eq. (2), bi
can win its bid at sj , only if it satisfies the following three
conditions: 1) its bid is no less than the minimum price p̃,
2) the resources required by bi can be met by sj , and 3) the
minimum staying time required by task bi, i.e., ti, is no more
than the least staying time of device sj , Tj . Without loss of
generality, we use Bj to denote the set of the buyers that satisfy
the above three conditions of sj . Hence, initially, x′

i,j = 0 for
∀i, j, and

Bj = {bi|ci,j ≥ p̃, ri ≤ Rj , ti ≤ Tj , ∀bi ∈ B} . (8)

We then choose the winning buyer candidates from Bj . We
re-sort the buyers in Bj according to the non-increasing order
of their bids, e.g., Bj = {bl1 , bl2 , · · · , bl|Bj |}, where

cl1,j ≥ cl2,j ≥ · · · ≥ cl|Bj |,j . (9)

We now consider the buyers in Bj as follows. To ease
understanding, we use pbi,j to denote the price that bi requires
to pay per unit resource, if bi is selected as one of the winning
buyer candidates of sj .

• If
∑

bi∈Bj
ri ≤ Rj , it means that sj has enough resources

to support all the buyers in Bj . In this case, we add all the
buyers in Bj as the candidates of the winning buyers, i.e.,
x′
i,j = 1 if bi ∈ Bj . Moreover, we set the price psj = p̃,

and pbi,j = p̃ for ∀bi ∈ Bj .
• If

∑
bi∈Bj

ri > Rj , we calculate the first k buyers whose
bids are the highest and can be satisfied by seller sj , i.e.,

k = argmax
k

{
k∑

k′=1

rlk′ ≤ Rj , ∀blk′ ∈ Bj

}
. (10)
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Then, all the buyers in {blk′ |1 ≤ k′ ≤ k} are selected as
the candidates of the winning buyers at sj , i.e., x′

lk′ ,j = 1

when 1 ≤ k′ ≤ k. Furthermore, we set the price pbi,j =
clk+1,j when 1 ≤ k′ ≤ k, and psj = clk+1,j .

The detail of the above process is presented in Algorithm 1.
All the sellers in S follow the same procedure as sj .

B. Payment Evaluation Process

Due to the distributed nature of auction decision making
process, the seller which acts as the auctioneer may cheat
on the final payment decided at it, so as to get higher
utility. For example, seller sj may notify untruthful payments,
pbi,j ̸= pbi,j , p

s
j ̸= psj , to the buyers. To address this issue, a

payment evaluation process is now proposed, which requires
the collaborations of the buyers.

After receiving the auction decision, each buyer will know
whether it wins in the auction or not. Then, the collaboration of
the buyers on evaluating each seller, e.g., sj , can be conducted
as follows:

• For each buyer ∀bi ∈ Bj , if it fails the auction at sj ,
it compares the payment decided by sj , psj , and its own
bid ci,j . If psj = ci,j , it broadcasts an acknowledgement
message to confirm the truthfulness of the seller.

• For each buyer ∀bi ∈ Bj , if it wins the auction at sj , it
waits the acknowledgements from other buyers. After a
certain period, if no acknowledgement is received and
the payment psj > p̃, the buyer judges that seller sj
makes cheat on the payment, and removes it from the
set of its winning seller candidates. Alternatively, if no
acknowledgement is received but the payment psj = p̃,
the buyer judges that the seller sj is truthful.

Before analyzing the above payment evaluation process, we
first get that

Corollary 1 For seller sj , the true payment decided by Al-
gorithm 1 should be either p̃ or the bid claimed by the buyer
whose bid is the largest among all the buyers failing in the
auction.

Proof: The above corollary can be easily obtained by
considering the two situations in Algorithm 1, which is thus
omitted here.

We then analyze the proposed payment evaluation process
as follows.

Lemma 1 With the above payment evaluation process, seller
sj cannot improve its revenue with cheated payment pbi,j ,
where pbi,j ̸= pbi,j .

Proof: We prove the above lemma by considering the
following two situations:

Firstly, if
∑

bi∈Bj
ri ≤ Rj , the true payment should be

pbi,j = psj = p̃. We now consider the untruthful case. If
pbi,j < pbi,j , the constraint in Eq. (2) will be violated. Al-
ternatively, if pbi,j > pbi,j , according to the payment evaluation
process, no acknowledgement will be received at the buyers,
and thus it is evaluated as the untruthful seller. Under such a

Algorithm 2: Final seller determination at bi
begin

pbi = 0;
if
∑

sj∈S x′
i,j = 0 then

set xi,j = 0, for ∀sj ∈ S;
end
if
∑

sj∈S x′
i,j = 1 then

set xi,j = x′
i,j , for ∀sj ∈ S;

set pbi = pbi,j , where xi,j = 1;
end
if
∑

sj∈S x′
i,j > 1 then

for ∀sj ∈ {sj |x′
i,j = 1} do

calculate Ui,j =
(
vi,j − pbi,j

)
ri;

end
j∗ = argmaxj

{
Ui,j |x′

i,j = 1,∀sj ∈ S
}

;
set xi,j∗ = 1, and xi,j = 0 for any other j ̸= j∗;
set pbi = pbi,j∗ ;

end
end

circumstance, sj will be removed from the set of winning
seller candidates, which results in 0 utility. Hence, in this
situation, seller sj will not cheat on its decision.

Secondly, if
∑

bi∈Bj
ri > Rj , the true payment pbi,j = psj =

clk+1,j , where the first k buyers in Bj win the auction. We
now consider the untruthful case. Due to the rationality, we
must have pbi,j > pbi,j = clk+1,j for the winning buyer bi, as
otherwise, the revenue of sj will be reduced. However, to pass
the evaluation process of the buyers, the payment pbi,j must be
equal to one of the bids claimed by the buyers failing in the
auction. In other words,

pbi,j ∈ {clk+2,j , · · · , cl|Bj |,j}. (11)

As clk+1,j ≥ clk+2,j ≥ · · · ≥ cl|Bj |,j , the revenue with
untruthful payment will be no more than that with truthful
payment.

In summary, seller sj cannot improve its utility with un-
truthful payment.

C. Final Seller Determination Process

With the above subsection, each seller selects some appro-
priate buyers as the candidates to win the bids. However, it is
noted that a buyer may be assigned to multiple sellers, which
cannot satisfy the rule defined in Eq. (4). Hence, for each
buyer, it is still necessary to determine the final seller.

The final seller determination process is conducted locally
at each buyer. For buyer bi ∈ B, according to {x′

i,j}, there
are three cases: 1)

∑
sj∈S x′

i,j = 0; 2)
∑

sj∈S x′
i,j = 1; and

3)
∑

sj∈S x′
i,j > 1.

Case 1 (
∑

sj∈S x′
i,j = 0): this means bi was not selected

as the candidate by any sellers in S, and hence cannot win its
bid. As such, we set xi,j = 0, for ∀j.

Case 2 (
∑

sj∈S x′
i,j = 1): it means that buyer bi wins its
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bid at a single seller. In this case, for buyer bi, we have

xi,j =

{
1, if x′

i,j = 1;

0, otherwise.
(12)

Moreover, we set the price that bi requires to pay per unit
resource is

pbi = pbi,j ,where xi,j = 1. (13)

Case 3 (
∑

sj∈S x′
i,j > 1): in this case, buyer bi is selected

by multiple sellers in the above subsection. To guarantee each
task can be executed at a single device, we choose the final
seller of bi as follows:

• For each seller sj , where x′
i,j = 1, we calculate the utility

of the buyer bi if bi wins the bid to sj , as follows:

Ui,j =
(
vi,j − pbi,j

)
ri. (14)

• Among all the possible sellers in {sj |x′
i,j = 1,∀sj ∈ S},

we select the one with the largest utility as the final seller,
e.g., sj∗ , where

Ui,j∗ = max
{
Ui,j |x′

i,j = 1, ∀sj ∈ S
}
. (15)

In other words, buyer bi will win its bid to seller sj∗ , i.e.,

xi,j =

{
1, if j = j∗;

0, otherwise.
(16)

Furthermore, we set the price pbi = pbi,j∗ .
The detailed process is described in Algorithm 2.

D. An Illustration

We now use an example in Fig. 2 to illustrate how
the proposed mechanism works. We consider five sellers
{s1, s2, · · · , s5} and four buyers {b1, b2, · · · , b4} in the sys-
tem. The amounts of resources available at seller s1, s2, · · · , s5
are 4, 5, 6, 8, 5 respectively. Correspondingly, the amount of
resources required for each buyer and the bid submitted
for each seller are given in Fig. 2. We also assume that
the minimum price set by the system is p̃ = 3. To ease
presentation, suppose that the least staying time of sj is higher
than the minimum staying time requirements of all the tasks:
Tj ≥ ti for ∀i, j.

Auction Decision Making Process: Initially, x′
i,j = 0 for

∀i, j, psj = 0 for ∀j, and pbi,j = 0 for ∀i, j. The sellers make
decisions locally.

• s1: B1 = {b1, b2, b4}, and after sorting, B1 = {b1, b4, b2}.
As

∑
bi∈B1

ri > R1, we calculate k = 2. Hence, x′
1,1 =

x′
4,1 = 1. We get pb1,1 = pb4,1 = c2,1 = 4, and ps1 = 4.

• s2: after sorting, B2 = {b2, b3}. As
∑

bi∈B2
ri > R2,

we calculate that k = 1. Hence, x′
2,2 = 1. We then set

pb2,2 = c3,2 = 4, and ps2 = 4.
• s3: after sorting, B3 = {b4, b1, b3}. As

∑
bi∈B3

ri > R3,
we get k = 2. Then, x′

4,3 = x′
1,3 = 1. Moreover, we can

obtain that pb4,3 = pb1,3 = c3,3 = 5, and ps3 = 5.
• s4: after sorting, we have B4 = {b3, b2}. Since∑

bi∈B4
ri < R4, x′

3,4 = x′
2,4 = 1. Then, we set

pb3,4 = pb2,4 = p̃4 = 3, and ps3 = 3.
• s5: after sorting, we have B5 = {b1, b2, b4}. As∑

bi∈B5
ri > R5, we calculate k = 2. Then, x′

1,5 =
x′
2,5 = 1, and set pb1,5 = pb2,5 = c4,5 = 5, ps5 = 5.

Final seller determination process: This procedure is also
locally conducted at each buyer.

• b1: as
∑

sj∈S x′
1,j > 1, we need to compare the utilities

obtained at all the possible sellers {s1, s3, s5} where
x′
1,1 = x′

1,3 = x′
1,5 = 1. Obviously, b1 can get the highest

utility at s1, U1,1 = (6− 4) ∗ 2 = 4, U1,3 = (5− 5) ∗ 2 =
0, U1,5 = (6 − 5) ∗ 2 = 2. Hence, s1 is the final seller
selected by b1, i.e., x1,1 = 1, and x1,j = 0 for ∀j ̸= 1.

• b2: it is noted that
∑

sj∈S x′
2,j > 1, and b2 is selected

as the winning buyer candidates at s2, s4, s5. Then, we
compare their utilities, and obtain that b2 achieves its best
utility at s2, where U2,2 = (6 − 4) ∗ 3 = 6. Hence, s2
is the final seller of b2, i.e., x2,2 = 1, and x2,j = 0 for
∀j ̸= 2.

• b3: as
∑

sj∈S x′
3,j = 1, we get that x3,4 = 1, while

x3,j = 0 for j ̸= 4.
• b4: It is noted that

∑
sj∈S x′

4,j > 1, i.e., both s1 and s3
choose b4 as their winning buyer candidates. Because b4
gets more utility at s1 than at s3, s1 is thus chosen as the
final seller of b4, i.e., x4,1 = 1, and x4,j = 0 for ∀j ̸= 1.

With the above mechanism, the successful trading pairs
are (b1, s1), (b2, s2), (b3, s4) and (b4, s1), with unit-resource
trading price/payment 4, 4, 3 and 4, respectively.

E. Performance Analysis

We now analyze the performance of the proposed auction
mechanism in achieving the computational efficiency, individ-
ual rationality, truthfulness, and budget balance.

Lemma 2 The proposed auction mechanism is computation-
ally efficient.

Proof: To prove the above lemma, we need to analyze
the computation complexity of Algorithm 1 and Algorithm 2.

• Auction decision making process (Algorithm 1): For
each seller sj , the complexity of calculating and sorting
the buyers in Bj is O(m log2 m). Then, calculating∑

bi∈Bj
ri and selecting the appropriate buyer candidates

consumes at most O(m) time-complexity. Hence, the
complexity of selecting the winning bid candidates at
each seller is O(m log2 m).
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• Final seller determination process (Algorithm 2): For
each buyer bi, calculating

∑
sj∈S x′

i,j and setting the
appropriate value for each xi,j runs with O(n2) time-
complexity. Hence, the complexity of determining the
final seller is O(n2).

To sum up, the complexity of the proposed auction mech-
anism is polynomial, and thus computationally efficient.

We further get that

Lemma 3 The proposed auction mechanism is individually
rational for both the buyers and the sellers.

Proof: According to Algorithm 1, there are only two cases
that buyer bi can be selected as one of the winning buyer
candidates of seller sj .

Case 1 (
∑

bi∈Bj
ri ≤ Rj): In this case, bi is selected as

one of the winning buyer candidates of sj , only if ci,j ≥ p̃,
as otherwise, bi /∈ Bj . Since the price of buyer bi and the
payment of seller sj are both set to pbi,j = psj = p̃, if bi is
selected as one of the buyers of sj , we have

ci,j ≥ p̃ = pbi,j ; (17)
psj = p̃. (18)

Hence, in this case, buyer bi is not charged a price that is
greater than its bid, and seller sj will not be rewarded with a
payment that is less than its asked minimum price.

Case 2 (
∑

bi∈Bj
ri > Rj): According to Algorithm 1, seller

sj only selects the first k buyers in Bj as the candidates,
where k = argmaxk

{∑k
k′=1 rlk′ ≤ Rj , ∀blk′ ∈ Bj

}
. Then,

if bi can be selected as one of the winning buyer candidates,
we must have bi ∈ {bl1 , bl2 , · · · , blk}, and ci,j ≥ clk,j . As the
price pbi,j = clk+1,j and psj = clk+1,j , if bi is selected as one
of the winning buyer candidates of sj , we have

ci,j ≥ clk,j ≥ clk+1,j = pbi,j = pbi ; (19)
p̃ ≤ clk+1,j = psj . (20)

Hence, the buyer bi is not charged more than its bid, and the
seller sj is rewarded no less than its asked minimum price.

Therefore, the proposed auction mechanism is individually
rational for both the buyers and the sellers.

We further analyze the truthfulness as follows.

Lemma 4 The proposed auction mechanism guarantees the
truthfulness of the bids submitted by the buyers in the auction.

Proof: To ease presentation, we use Bc
j and Bw

j to denote
the set of the winning buyer candidates and the final buyers of
seller sj with Algorithm 1 and Algorithm 2, respectively, i.e.,
Bc

j = {bi|x′
i,j = 1, ∀bi ∈ B}, Bw

j = {bi|xi,j = 1, ∀bi ∈ B}.
In other words, Bw

j ⊆ Bc
j . We now consider the case when the

buyer bi submits untruthful price information, i.e., ci,j ̸= vi,j .
Without loss of generality, we use U

b

i and pbi,j to denote the
utility of bi, and the price charged by bi at sj respectively,
when bi submits untruthful information.

For ∀bi ∈ B, there are two cases when bi submits truthful
information (ci,j = vi,j): 1) bi ∈

∪
sj∈S Bw

j , and 2) bi /∈∪
sj∈S Bw

j .

1) For buyer bi ∈
∪

sj∈S Bw
j , it must win its bid at one

of the sellers. Assume that bi wins its bid at seller sj , i.e.,
xi,j = 1, bi ∈ Bc

j . We now consider the case when bi submits
untruthful information.

• Buyer bi loses its bid at all of the sellers: In this case,
we have U

b

i = 0. According to Lemma 3, with truthful
submission, i.e., ci,j = vi,j , we can obtain that U b

i =

(vi,j − pbi )ri ≥ 0. Hence, U
b

i ≤ U b
i .

• Buyer bi also wins its bid at seller sj : As described in
Algorithm 1, the charging price of buyer bi is either p̃ or
the bid of the (k+1)-th buyer in Bj , which is independent
of the bid submitted by bi. Thus, we have U

b

i = U b
i .

• Buyer bi wins its bid, but at a different seller sj′ , where
j′ ̸= j. Then, the following two subcases are to be
considered.

– x′
i,j′ = 1 when bi submits truthful bid: this means

that bi is also selected as one of the winning buyer
candidates at sj′ in Algorithm 1 with truthful bid.
The reason that bi finally wins its bid at sj , instead of
sj′ , is that the utility obtained at sj′ , (vi,j′ −pbi,j′)ri,
must be no more than the utility obtained at sj ,
(vi,j − pbi,j)ri. That is,

(
vi,j′ − pbi,j′

)
ri ≤

(
vi,j − pbi,j

)
ri. (21)

Moreover, as the price charged by bi at sj is indepen-
dent of the bid sent by bi, we still have pbi,j′ = pbi,j′ ,
even if bi sends untruthful bid. Therefore, we can
obtain that

U
b

i =
(
vi,j′ − pbi,j′

)
ri

=
(
vi,j′ − pbi,j′

)
ri

≤
(
vi,j − pbi,j

)
ri = U b

i . (22)

– x′
i,j′ = 0 when bi submits truthful bid: it means bi is

not selected as one of the winning buyer candidates
of sj′ in Algorithm 1 with truthful bid. There are
two cases for this result. In the first case, bi /∈ Bj′ ,
i.e., ci,j′ = vi,j′ < p̃. When bi wins its bid at sj′

untruthfully, it pays pbi,j′ . Nevertheless, according to
Lemma 3, winning its bid must satisfy that pbi,j′ ≥ p̃.
Hence,

U
b

i = (vi,j′ − pbi,j′)ri

< (p̃− pbi,j′)ri

≤ (pbi,j′ − pbi,j′)ri

= 0 ≤ U b
i . (23)

In the second case, bi ∈ Bj′ , but bi is not included
in Bc

j′ . This case only happens when the truthful bid
vi,j′ ≤ clk+1,j′ , where k = |Bc

j′ |. Nevertheless, bi
wins its bid at sj′ untruthfully. Hence, the untruthful
bid ci,j′ ≥ clk+1,j′ . As the final payment of seller
sj′ is either clk,j′ or clk+1,j′ , i.e., pbi,j′ ≥ clk+1,j′ , we
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obtain that

U
b

i = (vi,j′ − pbi,j′)ri

≤ (vi,j′ − clk+1,j′)ri

≤ (clk+1,j′ − clk+1,j′)ri

= 0 ≤ U b
i . (24)

2) For buyer bi /∈
∪

sj∈S Bw
j , it must not win its bid at any

seller with truthful information. In other words, U b
i = 0. There

are two cases when bi submits untruthful bid.
• bi still does not win its bid at any seller: in this case, we

have U
b

i = U b
i = 0.

• bi wins its bid at seller sj untruthfully: we now consider
the reason that bi does not win its bid at sj in truthful
case.

– vi,j < p̃: in this case, bi cannot win its bid at sj
obviously. Nevertheless, if bi wins its bid at sj , its
untruthful bid ci,j must be no less than p̃. Moreover,
when bi wins its bid, we must have pbi,j ≥ p̃. Hence,
we have

U
b

i = (vi,j − pbi,j)ri < (p̃− pbi,j)ri ≤ 0. (25)

– vi,j ≥ p̃, but bi is not included in Bc
j : It means that

in truthful case, we have bi ∈ Bj , but bi /∈ Bc
j , i.e.,∑

bi∈Bj

ri ≥ Rj , (26)

vi,j ≤ clk+1,j , where k = |Bc
j |. (27)

As bi wins its bid at sj untruthfully, its submitted bid
ci,j must be no less than clk,j , as otherwise, bi cannot
be included in Bc

j . Moreover, as
∑

bi∈Bj
ri ≥ Rj ,

according to Algorithm 1, the price pbi,j is either clk,j
or clk+1,j . As clk,j ≥ clk+1,j , we have pbi,j ≥ clk+1,j .
Then, it is easy to get that

U
b

i = (vi,j − pbi,j)ri ≤ (clk+1,j − pbi,j)ri ≤ 0. (28)

To sum up, submitting untruthful bid cannot increase the
utility of the buyer. In other words, only with the truthful bid,
the maximum utility of the buyer can be achieved. Thus, we
prove the above lemma.

Lemma 5 The proposed auction mechanism is budget-
balanced.

Proof: According to Algorithm 1 and Algorithm 2, if
xi,j = 1, it means buyer bi will win its bid at seller sj , and
the price paid by bi is equal to the payment obtained at sj ,
i.e., pbi = psj . Hence, we have

m∑
i=1

xi,jrip
b
i =

m∑
i=1

xi,jrip
s
j , ∀j. (29)

In other words, the budget balance can be achieved, which
thus proves the lemma.

According to the above analysis, our proposed auction
mechanism holds the following properties: computational effi-
ciency, individual rationality, guaranteeing the truthfulness of
the bids, and budget balance.
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Fig. 3. Performance on individual rationality and budget balance

IV. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the performance of the proposed auction mechanism. Similar
to [28], we generate the bids submitted by the buyers and
the truthful valuation of the buyers according to a uniform
distribution within [0, 1], and the minimum price of the sellers
p̃ = 0.5. In the simulations, we investigate the performance of
the proposed scheme on the individual rationality, the impact
of untruthful activities on the utilities that can be achieved at
the buyers, and the system efficiency obtained by the auction
mechanism.

A. Performance on Individual Rationality and Budget Balance

We now evaluate the performance of our mechanism on
achieving the individual rationality and budget balance.

In this simulation, we set m = n = 50, randomly generate
the amount of resources required by each buyer bi within
[3, 10], and the amount of resources available at each seller
sj within [10, 20], i.e., ri ∈ [3, 10], Rj ∈ [10, 20]. Among the
winning buyers and their corresponding sellers, we choose 28
pairs of them, and for each pair, we show the bid submitted
by the buyer, final trading price/payment of the buyer/seller,
and the minimum prices asked by the trading seller.

As shown in Fig. 3, the final price paid by each buyer is
no more than the bid submitted by the buyer, and the final
payment earned at each seller is no less than the minimum
price asked by each seller. In other words, the individual
rationality of both buyers and sellers is well achieved by the
proposed scheme. Moreover, as described in Algorithm 1 and
Algorithm 2, the price paid by each buyer is the same as the
payment earned at its corresponding seller. Thus, the budget
balance can also be achieved in the simulation.

B. Performance on the Truthfulness of the Bidders

To evaluate the truthfulness of the bidders, we study two
settings in the simulations.

In the first setting, we only simulate the untruthful activity
of buyer bi on a specific seller bj , and investigate the utility of
bi obtained at sj . i.e., (vi,j − pbi,j)rixi,j . As shown in Fig. 4
(a), the truthful valuation vi,j is set to 0.7975, and bi can
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Fig. 4. Utility comparison of buyer bi at sj in truthful and untruthful cases

win its bid at sj if it submits the truthful bid. However, bi
may sends untruthful bid to sj , which is shown in x-axis.
As analyzed in Lemma 4, submitting untruthful bids cannot
increase the utility of bi at sj . Similarly, in Fig. 4 (b), we
investigate the other case when bi loses its bid at seller sj
with truthful valuation 0.1474. As seen, although bi can win
its bid at sj by submitting a bid much higher than its truthful
valuation, e.g., more than 0.4, its utility obtained at sj is much
less than 0. In other words, cheating on bids not only cannot
increase its profit, but also may hurt its own utility.

In the second setting, we investigate the utility of bi that can
be obtained at all the sellers, i.e.,

∑
sj∈S(vi,j−pbi,j)rixi,j . As

shown in Fig. 5, the value in x-axis is defined as the ratio of
the submitted bid to the truthful valuation, i.e.,

ci,j
vi,j

, ∀ci,j ∈ Ci. (30)

For example, if the ratio is 0.4, the bid ci,j = 0.4 ∗ vi,j . It is
observed that bi achieves the maximum utility when the ratio
is 1, as in this case, the submitted bid ci,j is exactly the same
as the truthful valuation vi,j . The smaller the gap between the
submitted bids and the truthful valuation, the larger the utility
achieved by bi. We would like to note that when the ratio
is small, e.g., between 0 and 0.5, the utility of the buyer is
0. This is reasonable, as when the buyer deliberately submits
a very low untruthful bid, the buyer is unlikely to win the
auction, according to Algorithm 1. In addition, when the bid
is less than the truthful valuation, increasing the submitted
bid can improve the utility, while when the bid is higher than
the truthful valuation, increasing it will decrease the utility. In
other words, only with truthful bid, the maximum utility of
the buyer can be obtained, which guarantees the truthfulness.

C. Performance on System Efficiency

As described in the previous sections, this paper mainly
aims to achieve the individual rationality, budget balance,
computational efficiency, and truthfulness of the bidders.
Nevertheless, system efficiency is also extremely important
for a practical system. Here, system efficiency is defined
as the number of successfully trades made by the proposed
auction mechanism. Generally, the more the number of the
successfully trades, the better the system efficiency, as more
tasks can be successfully allocated to the appropriate mobile
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Fig. 5. Utility comparison of buyer bi at all sellers under different bids
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devices for executions. To improve the system efficiency, we
run the proposed auction mechanism round by round, until no
further winning bids can be added.

To evaluate the performance on system efficiency, we intro-
duce two baseline algorithms, named optimal task allocation
scheme and TIM scheme respectively. Specifically, optimal
task allocation scheme only aims to find the optimal matching
between the tasks and the mobile devices, with the objective
of maximizing the total number of tasks that can be allocated
to the appropriate mobile device, which however, does not
consider the possible untruthful activities of the bidders. TIM
(Truthful Incentive Mechanism) is proposed in [28], which
also achieves the individual rationality, truthfulness of the
bidders and the budget balance. However, TIM is only suitable
in homogeneous system, where the buyers and the sellers
require and hold the same amount of resources, respectively.
Hence, it only makes one-to-one trade between the buyers and
the sellers.

As shown in Fig. 6, we fix the number of buyers (i.e.,
tasks) into 20, while varying the number of sellers (i.e.,
mobile devices) within [2, 4, 6, 8, 10, 12]. We can see that
the gap between the proposed mechanism and the optimal
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task allocation scheme is not large. Moreover, optimal task
allocation scheme cannot guarantee the truthfulness of bids
submitted by the bidders, as it only aims to optimize the
number of tasks allocated to the mobile devices. It is also
observed that although TIM scheme achieves the truthfulness
of the buyers, its system efficiency is much worse than ours.
This is possible, as TIM restricts that each seller can only be
matched with at most one buyer, while in our mechanism,
as long as the seller has enough resources, it can accept
multiple buyers. Moreover, Fig. 6 shows that when the number
of sellers increases, the system efficiency for all the three
schemes gets improved. The reason is that more sellers means
more resources in the system, and can be used to satisfy the
resource requirements of more tasks.

V. CONCLUSION

In this paper, we consider mobile task allocation problem in
mobile cloud computing. To incentivize the mobile devices to
participate in task execution, we construct an auction model
to facilitate the resource trading between the owner of the
tasks and the mobile devices. Specifically, the owners of the
tasks, acted as the buyers, submit bids to compete for the
resources available at the mobile devices, acted as the sellers.
A distributed auction mechanism is then designed to fairly
allocate the tasks, and determine the trading prices of the re-
sources. Furthermore, an efficient payment evaluation process
is proposed to prevent against the possible dishonest activity of
the seller on the payment decision, through the collaboration
of the buyers. We prove that the proposed auction mechanism
achieves certain desirable properties, including computation-
al efficiency, individual rationality, truthfulness guarantee of
submitted bids and the sellers, and budget balance. We also
validate the performance of the proposed mechanism through
simulations.
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