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Noisy Vibrational Pairing of IoT Devices
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Abstract—Internet of Things (IoT) is embodied by smart network-enabled devices that utilize computing power, networking, and

miniaturization for richer and improved user experience. Due to their interconnectedness, ubiquitous nature and low computational

power, trustworthy and secure communication between IoT devices is a security concern. For device authentication, “pairing” may be

secured by using an auxiliary channel such as audio, visual and vibrations for sharing the key or keying material between the IoT

devices. In this paper, we evaluate the security of vibration channel, susceptible to an acoustic eavesdropper that can capture audio

leakage from the vibrations of the transmitting IoT device. We propose a noisy vibration scheme for cloaking vibration sounds during

pairing against such attacks. The scheme only requires a speaker for emitting the masking sound during key transmission. We evaluate

the scheme in proximity, co-located and remote settings with an eavesdropping attacker. We also study motion sensor exploits against

this scheme and compliment it with additional measures to mask vibration effects on motion sensors. Our scheme is user transparent

and requires only a speaker (may already be present on the device), so it can be readily implemented in the IoT setting, smart

wearables, and other commodity gadgets.

Index Terms—pairing, side channel, IoT, signal masking, VoIP.

✦

1 INTRODUCTION

INTERNET of Things as defined by Global Standards Ini-
tiative on Internet of Things is “a global infrastructure

for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on exist-
ing and evolving interoperable information and communi-
cation technologies” [3]. Examples of household IoT devices
include the Nest smoke detector and thermostats, Smart
thermometers from Kinsa, smart bluetooth or wifi bulbs for
indoor lightening, smart security sensors including motion
sensors etc. 1 A forecast by Gartner, Inc. states that 8.4 billion
connected things will be in use worldwide in 2017 and
this number will rise up towards 20.4 billion by 2020 [4].
In addition, consumer based IoT devices constitute 63% of
total IoT applications in 2017. Such dynamic growth points
towards the significance of these class of devices in the
future end-user computing infrastructure and services.

In an IoT network, the devices usually communicate
with a central hub, usually a smartphone, or among each
other through WiFi, Bluetooth, RFID or long range cloud-
based interactions. These communication channels are in-
herently insecure i.e. they can be easily manipulated or
eavesdropped upon and therefore present a fundamental
challenge of securing such transmission pathways. “Pair-
ing” is commonly referred to the operation of bootstrapping
secure communication between two such devices such that
the communication between them is resistant to eavesdrop-
ping and manipulation (man-in-the-middle) attacks. Pairing
of IoT devices is a hard challenge due to lack of a global
infrastructure that can enable devices to share an on- or off-
line trusted third party, a certification authority, a public key
infrastructure (PKI) or any pre-configured secrets.

An existing approach to pairing is to leverage an aux-
iliary channel, also referred to as an out-of-bound (OOB)
channel, that can be controlled by the users operating the

This submission is an extension of work done in [1] and [2].
1. A list of IoT devices currently on market is available at

http://iotlist.co

devices. OOB channels, unlike wifi or bluetooth, are human-
perceptible that indicates perception by one or more of the
human senses. Some examples of such OOB channels are
audio, vibration and visual medium. In these channels, the
user is able to confirm the origin of the transmitted message
and can detect any manipulation attempts by an adversary.
It may not be able to prevent the adversary from eaves-
dropping on the OOB channel. Pairing using OOB channels
has been referred to as authenticated-OOB (A-OOB) [5]. It
has been the basis of a number of protocols proposed in
literature as surveyed in [6].

Pairing becomes a challenging problem when one of the
devices involved in the process falls under the category of
constrained devices. A device is considered to be a constrained
device when it lacks a good quality output interface (such as
a full screen display) or an input interface (e.g. a keyboard)
or receivers (e.g. cameras, microphone). Many IoT devices
(like smart home appliances) fall into this category. A-OOB
pairing for such devices is difficult due to the fact that
establishing bidirectional and automated A-OOB channels
on such devices is challenging, in general. In addition,
manual mechanisms for pairing constrained IoT devices can
be prone to human errors [6] that could potentially lead to
man-in-the-middle attack.

An alternative approach for pairing geared especially
towards constrained devices involves using a secret as well
as authenticated OOB channel (AS-OOB in [5]). Since the
channel is supposed to be authenticated as well as secret, it
is assumed that an adversary would be unable to detect or
manipulate the transmission over this channel between the
two devices. In an AS-OOB channel, pairing can be achieved
by simply transmitting the key or the keying material over
the channel and it is also devoid of any human errors. In
case of a low bandwidth channel, a short PIN or password
can be transmitted and password-based authenticated key
agreement [7] protocol can be used for pairing.

Some examples of pairing protocols that use AS-OOB
channel are [8] and [9]. The IMD pairing scheme in [8] uses
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a low frequency audio channel to pair an RFID tag (attached
to an implanted medical device) with an authorized RFID
tag reader. The PIN-Vibra method [9] uses vibration channel
to transmit the key/keying material from the transmitter
(e.g., the IoT hub smartphone device) to the receiving device
(e.g., an IoT appliance). In this scheme, the phone generates
a short PIN, encodes it as an ON-OFF vibration scheme and
transmits it as vibrations (generated by a miniature vibra-
tion motor) to the receiving device. The receiving device can
read the vibrations using an MEMS accelerometer followed
by a decoding process based on the ON-OFF scheme.

While both the pairing schemes detailed above offer an
alternative approach to pairing, they have been shown to be
susceptible to eavesdropping attack. In the case of using a
low frequency audio channel for transmitting PIN or short
password, it was discovered that the audio channel can
be eavesdropped upon by an adversary that can learn the
transmitted communication [5]. In this work, we show that
similar eavesdropping attack can also be detrimental to a
vibration based AS-OOB channel pairing protocol that can
lead to leakage of the transmitted PIN or short password.
Furthermore, we also demonstrate that it is still possible
to eavesdrop on the vibrations during the pairing process
even when the vibration sounds are cloaked within a band
limited white noise based masking signal. We provide a vi-
able countermeasure leading to a secure “noisy” vibrational
pairing scheme well-suited for securely connecting the IoT
hub smartphone device with other IoT devices.

1.1 Our Contributions

In our work, we perform an investigation of pairing proto-
cols for IoT scenarios based on vibration channel.

• We recreate Pin-Vibra [9] protocol to implement pairing
between an IoT hub (a smartphone) and an IoT device.
We show that this protocol is vulnerable against an eaves-
dropping adversary that exploits the acoustic leakage re-
sulting from vibrations (“standard attack model–proximity
attacker”). To counteract it, we introduce noisy vibration
based pairing where the acoustic leakage from vibrations
are hidden by a masking signal (noise signal).

• We further show that while noisy vibration based pairing
may be able to withstand “standard attack model”, an
“advanced attack model–colocated adversary” can relatively
easily defeat noisy vibration pairing. To prevent such an
attack, we suggest the addition of low frequency tones to
the masking signal that would hide the acoustic leakage at
low frequencies preventing the co-located adversary from
learning any information about the vibrations.

• We enhance the proposed defense against a co-located
motion sensor exploiting adversary by injecting fake read-
ings into the actual sensor readings. We extend the notion
used in [10], [11] in our proposed defense by using it to
mask the vibration effect on accelerometer on the trans-
mitting device thereby mitigating an adversary that may
exploit the accelerometer on the transmitting device.

• We propose a novel eavesdropping scenario where a stan-
dard voice call or voice over internet protocol (VoIP) ap-
plications are exploited to spy upon the acoustic leakage
from vibrations remotely. We show that it is possible for
such an attack to decode the transferred keying informa-
tion (during pairing) by exploiting the vibrations sounds,

recorded over the call, in a similar manner to previous
acoustic eavesdropping exploits against vibration pairing.

1.2 Outline of the paper

In Section 2, we detail the existing work on pairing con-
strained devices using an A-OOB channel. Section 3 demon-
strates the protocol used in vibration based pairing mecha-
nism in the context of constrained devices. Section 4 show-
cases the vulnerability of vibration based pairing protocol
against a proximity attacker and Section 5 proposes noisy
vibration pairing as a possible solution. Section 6 analyzes
white noise defense against a proximity attack and Section
7 analyzes it against a co-located adversary. The remote
eavesdropping attack is introduced in Section 8 and contains
evalaution of the attack against noisy defense mechanism.
Section 9 summarizes and discusses the results and Section
10 has the take-home message.

2 RELATED WORK: PAIRING FOR CONSTRAINED

DEVICES USING OOB CHANNEL

The usage of OOB channel for pairing and bootstrapping
security has been proposed in existing literature. Balfanz
et al. [12] proposed the use of a location limited channel
(based on physical contact between the devices) in a pre-
authentication step where the pairing devices can exchange
pairing information. This data can later be used for subse-
quent authentication of the devices on wireless or Bluetooth
channels. The location limited channel could be audio,
infrared, visual or contact channel. Goodrich et al. [13]
developed an audio based OOB channel for secure device
association called “Loud and Clear”. It used a text-to-speech
(TTS) engine for converting an English sentence (derived
from device’s public key) to speech and display/render the
same sentence on the receiving device.

Another audio based pairing approach was taken by
Halperin et al. [8] for wireless implantable medical devices
(IMD), such as pacemakers and implantable cardiac de-
fibrillator (ICD). They showed that prior communication
protocols used by IMDs to communicate wirelessly with
an external programming entity are susceptible to various
radio-based attacks. They proposed zero-power defenses
involving an RFID tag attached to the IMD. A secure com-
munication channel is established between the IMD and an
external reader by having a small piezo element attached
to the RFID tag on IMD. The piezo element transmits a
random key over a low frequency audio channel than can
be recorded and decoded by an external reader.

Seeing-is-Believing is a pairing protocol proposed by
McCune et al. [14] that is based on a visual channel. In this
protocol, a camera is used to take a snapshot of a barcode
that encodes the cryptographic material. The barcodes can
be pre-configured and attached as labels on devices or
they can be produced on demand and displayed on the
device’s display unit. Saxena et al. [15] extended this work
to the context of constrained devices especially devices with
limited form of display, such as a single light emitting diode
(LED). Since most of the constrained devices may already
have a single light sensor and the visual channel for the
light sensor can be verified by a human user, this scheme is
both cost effective and secured by user perception.
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Kim et al. [16] proposed a vibration based side channel
for securing communication between an external device (a
reader or a smartphone) and a medical device. The proposed
technique is based on an OFF-ON keying demodulation
scheme for exchanging a shared cryptographic key for
implantable and wearable medical device (IWMD). They
also performed a security analysis of the proposed scheme
against an acoustic eavesdropping adversary at a distance of
30 meters. They concluded that such an adversary was un-
able to demodulate the recorded waveform into the shared
key in the presence of a strong masking signal.

Several other pairing protocols based on bidirectional
device-to-device A-OOB (e.g. [6]) require both devices to
have transmitters and corresponding receivers (e.g., IR
transceivers), which may not exist on constrained devices. In
settings, where dtd channel(s) do not exist (i.e., when at least
one device does not have a receiver), pairing methods can
be based upon device-to-human (dth) and human-to-device
(htd) channel(s) instead (e.g., based on transfer of numbers
[17]). However, establishing such channels on constrained
devices may also not be feasible.

3 VIBRATION BASED PAIRING FOR IOT DEVICES

Pairing between devices often involves a shared secret that
allows the communicating devices to authenticate them-
selves and establish a trusted and secure communication
channel. For example, pairing between an IoT device and an
IoT hub could be achieved by the IoT hub generating a short
key or keying material and sending it to the receiveing IoT
device over an OOB channel. The receiving IoT device can
decode the key/keying material depending upon the nature
of the OOB channel and utilize the received data for further
securing the main communication channel. The security of
producing a shared secret as such, rests upon the premise
that the associated OOB channel is inherently secure against
eavesdropping and manipulating attacks.

Vibration based Pairing Protocol: In a vibration based
pairing scheme, the transmitting IoT device encodes the
keying material (a short passphrase or PIN) into vibrations
through a vibration motor. The transmitting device is placed
in contact with the receiving device prior to the pairing
process. The receiving device (also a smart device) con-
tains MEMS accelerometer that is capable of recording the
vibrations conducted through the transmitting device. The
accelerometer readings after recording the vibrations can be
decoded to obtain the transmitted data.

A common encoding technique for encoding bit string
into vibrations that can be transmitted to another device
is a time based ON-OFF encoding mechanism. Under this
scheme, each bit is encoded as a vibration for a fixed time
interval (t) if it is “1” and every “0” bit is encoded as same
time period (t) of stillness or no vibration. In Vibrate-to-
Unlock scheme [9], the time interval t is fixed as 200ms. In
order to detect a valid transmission, a header is attached
to the transmitted data which is fixed as “110”. As per
the scheme, a 4-bit PIN is generated by the transmitting
device and is converted to its 14 bit binary equivalent string.
Prior to transmission, the preamble (as described before) is
attached to the string increasing its length to 17 bits. Since

time duration for every bit is 200ms, the entire transmission
takes 17× 200ms = 3.4 seconds.

4 PROXIMITY ATTACK ON VIBRATION PAIRING

The pairing scheme described in Section 3 has been shown
susceptible to an acoustic eavesdropping attack in [18]. In
this attack, the attacker exploits acoustic emanations that
are generated during the process of pairing as a result of the
vibrations of the transmitting device. In this attack model,
we assume that the pairing protocol being used is known to
the attacker. This knowledge includes the bit length of the
transmitted string, the scheme used for encoding vibrations
and the preamble attached to the bit string that denotes the
beginning of the transmission.

The proximity attack model assumes an attacker eaves-
dropping on vibration based pairing from a nearby location.
The distance between the attacker and the pairing devices
depends on the loudness of vibrations generated by the
transmitting device and on the ability of the eavesdropping
attacker to record those acoustic emanations. The attacker
does not have access to the microphone (if present) on any
of the devices involved in the pairing effort. The attacker or
the listening device, being at a distance, can be assumed to
unnoticeable by the victim/s.

In order to highlight the threat of the attack, the attacker
uses off the shelf recording devices such as PC microphones
or microphone/s in his own smartphone. These devices are
low cost and ubiquitous in nature and hence make the attack
simple to launch. A depiction of proximity attack model can
be found in Fig.1a. We also assume that the environment
is devoid of any intentional background noise that may
interfere with the recording capability of the attacker.

4.1 Attack Experiment under Proximity Attack Model

Equipment: We used Motorola Droid X2 phones as pairing
devices where one of the phones acted as a transmitter
while the other phone acted as a receiver. Both phones were
equipped with vibration motor and accelerometer sensor. To
record the acoustic leakage from vibrations, we used Dynex
USBMIC13 PC microphone [19] with a frequency response
of 150Hz – 10kHz and Audacity application. To process the
captured audio, we used Matlab signal processing toolbox.
Experiment: On examining the spectrum in Fig.1b, the
acoustic leakage from the vibrations shows a dominant
response in the frequency band 3.5 kHz to 8.3 kHz. The
intensity of the signal in the spectrum (an indication of
energy in the signal) seems to concentrated from 6.8 kHz to
7.8kHz. To decode the transmitted data from the recorded
signal, we convert the recorded signal to frequency domain
and detect the beginning of the transmission (using the
preamble “110”) using a suitable threshold for the sum of
FFT coefficients of the signal. A window size of 441 samples
with 50% overlap and the frequency band 6.8 kHz – 7.8 kHz
is chosen for best results. The plot of sum of FFT coefficients
against time can be observed in Fig.1b.

We tested our eavesdropping attack on ten random PINs
using the above setup with the recordings done at a distance
of 15cm. The attack was successful with 100% accuracy,
demonstrating that communication using vibrations is sus-
ceptible to an acoustic eavesdropping attacker with a high
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(a) Acoustic eavesdropping: proximity attack model (b) Spectrogram of the acoustic leakage (Fre-
quency vs Time)

Fig. 1. Proximity attack model and acoustic characteristics of the vibration leakage for PIN “4562” under the model. Color intensity in the spectrum
is proportional to energy in the frequency band with blue color indicating lowest energy per frequency and red being the highest energy contained
per frequency. Sum of the FFT coefficients indicates the estimated energy at the time instant.

degree of accuracy. This result is in-line with the results
of the acoustic eavesdropping attack scheme proposed by
Halevi et al. [5].

5 OUR DEFENSE: NOISY VIBRATION PAIRING

A proximity eavesdropping attacker exploits acoustic leak-
age emanating from the vibrations during pairing for de-
coding the transmitted PIN or key. To prevent such an
attack, acoustic leakage should be minimized or hidden in
such manner that it becomes very hard for the proximity
attacker to extract any meaningful information about the
transmitted PIN or the key. To achieve this objective, either
signal cancellation or signal masking can be deployed.

5.1 Audio Leakage Cancellation

Roy et al. [20] proposed canceling of the sounds of vibration
(termed SoV) by generating an “anti-noise” signal on the
transmitting device (source of vibration). To estimate the
effect of surface on which the device has been placed, a short
preamble is transmitted and the resulting SoV is recorded.
The FFT of SoV is examined for the strongest overtones
that are then combined to create the “anti-noise” signal.
For phase alignment, the transmitter increases the sampling
frequency of “anti-noise” signal keeping track of the phase
difference of the “anti-noise” and SoV, switching it back to
its original value when the phase difference is minimum.

This approach may not be suitable for IoT devices that
are computationally restricted in their ability to perform
heavy signal processing tasks like FFT calculation and real
time phase synchronization. It may also take more time to
generate “anti-noise” signal than the entirety of the pairing
process (our setup in Section 3 takes 3.4s). Another possible
flaw in signal cancellation defense lies in the fact that it is not
possible to cancel out SoV completely and promptly. It takes
some time before we can determine the phase difference
and then perform the matching, during which SoV would
be constantly leaking confidential information. It may also
be possible that a more sophisticated attacker (e.g. using
machine learning) may be able to recover some remnant
information about SoV from the resultant signal.

If we do not consider the duration of the communication
as a limiting factor by artificially padding it via an addition
of a preamble to the actual PIN, cancellation of audio signal

may yet prove to be capable of mitigating the acoustic side
channel attack. However, in this work, we restrict ourselves
to the examination of easy to generate and computationally
light signal masking technique.

5.2 Audio Leakage Masking

Signal masking mechanism is commonly featured in radio
communications where the presence of noise in the envi-
ronment corrupts the signal. If the signal to noise ratio
(SNR) is low, it becomes hard to differentiate the signal from
the background noise. This phenomenon can be utilized
against an acoustic eavesdropping attacker by intentionally
introducing noise (referred as masking signal) during the
vibrational pairing so that it cloaks the audio leakage from
the vibration making it indistinguishable from the masking
signal. As the effectiveness of the defense mechanism de-
pends on the difficulty of the adversary’s task in filtering
out masking signal from eavesdropped signal, we test out
variants of masking signal that can be deployed to mask the
acoustic leakage from vibrations effectively.

To defend the pairing process against a proximity at-
tacker (Section 4), we propose Vibreaker , a defense mecha-
nism that generates a masking signal obscuring the audio
leakage, making it hard for the adversary to extract any
information about the data transmitted during the pairing
of devices. In order to measure the effectiveness of our
mechanism, we experiment with different types of sounds
that could potentially be the masking signal and evaluate
their security against an attacker as defined in Section 4.

6 VIBREAKER AGAINST PROXIMITY ATTACK

We will now evaluate the efficiency of various masking
signals against an eavesdropping attacker as described in
Section 4. We will also investigate the possibility of filtering
out the masking signals by the attacker and extracting any
relevant information from the resultant signal.

6.1 White Noise as Masking Signal

White noise is defined as a random signal having a constant
power spectral density. White noise is constantly present in
our environment for example, the humming sound emanat-
ing from air conditioning units. It has also been used for
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(a) Frequency spectrum and sum of FFT coefficients plot against
time for the eavesdropped signal.
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(b) Bit error rate vs threshold values for noisy vibrational pairing.
Since we begin from maximum threshold value, the x axis is in
descending order.

Fig. 2. Frequency features of the eavesdropped signal and accuracy of a proximity attacker against Vibreaker(white noise) for PIN “4562”. Color
intensity in the spectrum is proportional to energy in the frequency band with blue color indicating lowest energy per frequency and red being the
highest energy contained per frequency. Sum of the FFT coefficients indicates the estimated energy at the time instant.

sound masking in offices by suppressing other distracting
sounds. Here, we use white noise as the simplest candidate
masking signal that can be generated easily. Filtering the
white noise signal is not a hard task, but the process of
filtering also diminishes the quality of the recovered signal.
Since white noise is evenly distributed over all of the fre-
quency spectrum, trying to filter it out also removes some
of the signal in the frequency bands where the white noise
overlaps with the spectrum of the original signal (audio
leakage from the vibrations).

Experimental Setup: We use the wgn function of Matlab
to generate a 10 second sample of white Gaussian noise at
a sampling frequency of 44.1 kHz. White gaussian noise
is a good approximation of real world white noise and
hence sufficient for our intentions. A frequency filter to
the generated noise sample can be applied to limit the
white noise spectrum to the same frequency band as the
audio leakage from vibrations. Once we have generated the
white noise sample, we play it in the background during
the pairing of the IoT devices with the transmitting device
vibrating to deliver the PIN or key to the receiving device.
To make sure that the white noise suppresses all the audio
leakage, we introduce a delay in the pairing process such
that it begins only after the white noise has started playing
in the background.

Observations: To study the effectiveness of white noise as
a masking signal against a proximity attacker, we use the
pairing protocol described in Section 3. Our observations for
the recording done at a distance of 15cm (Fig.2a) show that
white noise is able to mask the audio leakage from the vibra-
tions. In addition, plotting sum of FFT coefficients over time
(an indication of energy in the signal) does not reveal any
vibration sounds in the intended frequency domain. The bit
error rate of the attacker (Fig.2b) never reaches 0%, the best
effort being at approximately 35%. Apart from covering the
spectrum in which the audio leakage from the vibrations lie,
the sound level of the white noise can be kept more than that
of vibration sounds thereby easily suppressing the leakage.
Since vibration sounds are not loud, it is easy to generate
louder white noise for a short duration that only lasts till
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Fig. 3. Bit error rate against threshold values for PIN “4562” after filtering
the white noise. Since we begin from maximum threshold value, the x
axis is in descending order.

pairing is successfully completed.

Filtering the Masking Signal: While our results indicate
that white noise is capable of hiding acoustic leakage,
there exist filtering method that use spectrum subtraction
to remove a static signal like white noise from the recorded
audio. For filtering the white noise, we use the noise reduction
effect from Audacity tool that selects a small sample of noise
as the profile of the static signal to be removed and subtracts
it from the spectrum of the recorded audio. This technique is
known as spectral noise gating and it works by suppressing
all pure tones that fall below a pre-determined threshold
(determined from the created profile of static noise) in each
frequency band. We used a noise reduction level of 15dB
and a sensitivity value of 6 to get the best results. Fig.3
shows the bit error rate for the attacker after filtering the
white noise. From the plot, it is clear that the attacker never
achieves a bit error rate of 0% (fully decoded PIN). The best
bit error rate remains similar to the one achieved prior to
filtering. This effect is due to complete cloaking of the audio
leakage by the white noise and the subsequent filtering that
destroys any information about the acoustic leakage itself
(due to frequency overlap).
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6.2 Pre-recorded Vibration Sounds as Masking Signal

Our next choice of masking signal is a close representation
of the audio leakage itself i.e. the sound generated during
the vibration of the PIN transmitting IoT device. We pre-
record the sound emanated during the vibration and try to
confuse the attacker by masking the audio leakage from the
vibrations with pre-recorded vibration sounds (henceforth
referred as fake vibrations).

Experimental Setup: We generated a random sequence of
numbers and encoded them as vibrations using the same
protocol as PIN-Vibra [9]. However, in order to make sure
that the fake vibrations completely overlap with the actual
vibrations, we reduced the duration of silence between the
vibrations from 200ms to 100ms. The resulting vibration
sequence is recorded offline and stored for use as the mask-
ing signal. When the user initiates the protocol for sending
the PIN via vibrations, the device in addition to vibrating
also plays the stored masking signal in the background.
We adjusted the timings of the masking signal such that
it always begins playing at approximately the same time as
the vibrations. The proximity attacker is again presumed to
be eavesdropping at a distance of 15cm.

Observations: Our results (Fig.4) show that fake vibrations
are able to mask the audio leakage resulting from the
device’s vibration. It is very hard to distinguish between
fake vibration signals and the audio leakage based only
on frequencies as demonstrated in Fig.4a. The sum of FFT
coefficients also shows identical response from the fake vi-
brations and the acoustic leakage from vibrations indicating
that audio leakage has completely been masked. The bit
error rate for the proximity attacker for each threshold value
is shown in Fig.4b. The best bit error rate achieved by the
attacker is 30% which is similar to the accuracy achieved in
the proximity attack model in noisy vibration pairing. Thus
fake vibrations provide similar defense capabilities as white
noise in our experiments.

Filtering the Masking Signal: We applied the same filtering
process that was used for filtering out white noise. Since
sounds of fake vibration differ from actual vibration sound
due to imperfect reproduction by the speakers, we (as an
attacker) listened to the eavesdropped audio signal and
selected the part that we believed to be the fake vibrations.
The selected part of the audio was used as the noise profile
and applied to the full length of the eavesdropped audio
signal for filtering the fake vibrations. The results (Fig.5)
after the filtering process show that the bit error rate is
around 20% indicating that the attacker fails to completely
decode the recorded sound even though it is a slightly
better error rate when compared against white noise. Thus
fake vibrations could also serve as a masking signal for
obfuscating the vibration sounds.

7 VIBREAKER AGAINST CO-LOCATED ATTACK

In the attack model described in Section 4 (proximity attack),
the eavesdropping attacker is at a distance from the pairing
devices. This threat model can be further strengthened by
decrementing the distance between the pairing devices and
the eavesdropping attacker to almost zero. This extension of
the attack model places the adversary in the same physical

location as either of the devices involved in pairing, hence-
forth called co-located attack.

The advantage of a co-located eavesdropper from an
attack point of view is a more accurate recording of the
acoustic leakage from vibrations as it places the recording
device close to the source of acoustic emanation from the
vibration motor of the device transmitting the pairing data.
The assumption that the eavesdropper is residing on one
of the devices (co-resident) can be realized in real life if
the vibration transmitting device is equipped with an on-
board microphone (for example, a smartphone) that can be
manipulated into recording vibrations through a malicious
application installed by an attacker. Another way for an
attacker to implement co-located attack scenario would be
by attaching a tiny listening bug [21] to either of the pairing
devices. This effort would, however require one-time access
to the compromised device constituting a lunch-time attack.

A co-located attacker can exploit the microphone on the
device to record the acoustic leakage resulting from vibra-
tions. One point to note in the context of smartphones is
that access to microphone requires explicit permission from
the user. However, studies done on android smartphones
suggest that the comprehension and attention level of users
while granting these app permissions are very dismal [22].
This may help an eavesdropping attacker slip past such
restrictions. In addition, audio channel opens up other
different attack possibilities that include eavesdropping via
a voice based call constituting a case of remote attacker–
coresident eavesdropping scenario. Towing the same line as
proximity attack model, we assume that attacker is capable of
recording the acoustic leakage from vibrations and process
it offline using signal processing tools. The environment
is considered to be noise-free except for the participating
devices in the scenario.

In addition to a co-located attacker that can exploit the
microphone of the transmitting device (IoT hub), another
type of co-located attack exists that can exploit on-board
motion sensors of the IoT hub (smartphone) and learn the
transmitted PIN/passphrase from the effect of IOT hub’s
vibrations on its own motion sensors. We study this type
of attack and propose a defense that seeks to transparently
hide the vibration’s effect present in the motion sensor’s
readings from the co-located attacker.

7.1 Attack Experiment under Co-located Attack Model

The attack principles under this advanced eavesdropping
attack model are similar to proximity attack model. We im-
plemented the same ON-OFF encoding scheme for trans-
forming 4-bit PIN into vibration sequence. We used the
same set of Motorola Droid X2 smartphones as the com-
municating devices, with one acting as the transmitter and
other as the receiver. To record the audio generated from
the vibrations, we used Dynex PC microphone and Matlab’s
signal processing toolbox for processing the recorded audio.
The microphone is placed at a distance (≤ 1cm) from the
vibrating device in order to record the vibration sounds
at the closest possible distance for emulating a co-located
adversary. The on-board microphone can also be used for
this purpose as per detailed in the threat model.

To complete the noisy vibrational pairing setup, we also
implemented the defense measures as proposed in [23].
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(a) Signal Features in presence of fake vibrations.
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(b) Bit error rate against threshold values in the presence of fake
vibrations. Since we begin from maximum threshold value, the x
axis is in descending order.

Fig. 4. Frequency features of the eavesdropped signal and the effectiveness of a proximity attacker in presence of fake vibrations for PIN “4562”.
Color intensity in the spectrum is proportional to energy in the frequency band with blue color indicating lowest energy per frequency and red being
the highest energy contained per frequency. Sum of the FFT coefficients indicates the estimated energy at the time instant.
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Fig. 5. Bit error rate against threshold values for PIN “4562” after filtering
fake vibrations. Since we begin from maximum threshold value, the x
axis is in descending order.

The defense measure in [23] utilized band-limited Gaussian
white noise that lies in the same frequency range as the
audio leakage from the vibration, to hide the acoustic leak-
age from the vibrations. The masking sound was generated
as the transmitting device starts the communication with
the receiving device for pairing. On the side of the attacker
that has the capability to process the eavesdropped audio
signal offline, we also used the “noise reduction” feature of
the audio processing tool Audacity to filter out the noise
and reveal part or whole of the audio leakage. This feature
allows the selection of a small portion of the audio signal
consisting of the noise only to build a noise profile that is
then filtered from the whole audio signal.

7.1.1 Effectiveness of the Attack

As per the threat model detailed in Section 7.1, we recorded
vibration sounds superimposed by the masking sound at
a distance of 0cm. We also recorded vibration sounds at
a distance of 10cm for comparing it with the co-located
adversary scenario. Figure 6a and Figure 6b represent the
frequency spectrum of the eavesdropped signal at distances
0cm (as per our threat model) and 10cm (similar to [23]).
The frequency spectrum revealed that masking sound may
be able to hide the audio leakage due to the vibrations from
an adversary eavesdropping at a distance. However, for
a co-located adversary, the masking sound was unable to
hide the audio leakage resulting from the vibrations at the
lower frequency range of 50Hz-250Hz. Since white noise

has same intensity for all frequency, while the vibration
emanations have higher intensity at low frequencies (as
evident in frequency spectrum of Figure 6a, we believe
white noise alone would be unable to hide the emanations
due to uneven spectral power density of the emanations.

In our proximity attack model (Section 4), we showed
that white noise was enough to hide acoustic leakage oc-
curring from vibrations of the device for an attacker at
a distance of 10-15cm. Yet, as we demonstrated in our
experiments, white noise (same as pseudorandom noise) alone
was inadequate to mask the vibration sounds for a co-located
attacker. Hence, we needed to explore further options to
bolster the white noise masking signal in order to mitigate
an eavesdropping attack from a co-located attacker.

7.2 Novel Defense based on Low-Frequency Noise

Since white noise was unable to mask the vibration sounds
at low frequencies, we tried to strengthen the white noise
at the lower frequency band of 50Hz-250Hz against a co-
located adversary. We also faced some challenges in the
implementation of the proposed masking signal with the
attack setup described in Section 7 that we will describe
here. Lastly, we evaluated the efficiency of the proposed
masking signal against sophisticated attacks and its effect
on vibrational sensors of the receiving device.

7.2.1 Masking with Vibrations and Low-Frequency Tones

As observed in the previous section, white noise alone
proved ineffective at masking low-frequency vibration
sounds. To overcome this shortcoming, we considered other
signals that could prove effective at masking audio leak-
age at low frequencies. We tried to add sounds that are
acoustically similar to vibration sounds to confuse the ad-
versary between the real vibration sounds and the pre-
recorded vibration sounds mixed with the white noise. We
recorded vibrations of Droid X2 phone from our setup with
the inbuilt microphone, with the phone placed on a glass
surface. Ripple [20] indicated a glass plate as producing the
strongest side channel leakage when the vibrating device
is placed on it. This motivated us to record the vibrations
on a glass surface (henceforth referred as fake vibration
sounds) as stronger the vibration sounds, stronger would be
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(a) Frequency spectrogram for audio recorded at a distance 0cm.(b) Frequency spectrogram for audio recorded at a distance
10cm.

Fig. 6. Difference in audio characterstics of recorded vibration sounds at close (0cm) and far (10cm) distances. Color intensity in the top graph is
proportional to energy in the frequency band with blue color indicating lowest energy per frequency and red being the highest energy contained per
frequency. Sum of the FFT coefficients indicates the estimated energy at the time instant.

Fig. 7. Frequency spectrogram of real vibration sounds mixed with fake
vibrations sounds. Color intensity in the spectrum is proportional to en-
ergy in the frequency band with blue color indicating lowest energy per
frequency and red being the highest energy contained per frequency.

their recording, producing similar effect as actual vibration
sounds when played back during the pairing process.

After recording fake vibration sounds, we played it on
the device during pairing process to gauze similarity of the
fake vibration sounds with audio leakage of real vibration
on the frequency spectrum. Figure 7 shows the resulting
frequency spectrum. As it is clear from the spectrum that
while fake vibration sounds matched the audio leakage
from the real vibration to most extent, they lacked the
required low-frequency components contained in the audio
leakage. Hence, they offered no better protection over the
white noise masking signal and neither did the combination
of both the white noise and fake vibration sounds (due to
their inefficiency at lower frequency range).

The lack of low-frequency components in the fake vibra-
tion signal implored us to explore software based solutions
for improving the quality of the audio playback to recover
the desired low-frequency response. Since, our device ran
on Android platform, we utilized audio effects and controls
offered by the platform via AudioTrack API (Application
Programming Interface) but no improvements were ob-
served and boosting the signal only resulted in clipping of
the audio signal, a phenomenon explained below:

Non Linearity: This phenomenon is widely encountered
in electrical circuits e.g. an amplifier, where the generated

output signal strength is not directly proportional to the
input signal strength.

Clipping: This phenomenon occurs due to distortion of
the waveform when an amplifier is over-driven by trying to
produce an output signal, the strength of which is beyond
the specified limits of the amplifier. This causes the signal
to be clipped at the limits resulting in a distorted wave. A
side effect of clipping is the introduction of harmonics of the
signal at higher frequencies.

The next choice in our experiments was to generate tones
in the desired frequency range and add them to the white
noise to obfuscate the audio leakage from the vibration
sounds. For this purpose, we used the Tone Generator func-
tion in Audacity along with the Noise Generator, and used
“mix and render” functionality to produce the combined
signal that is a mixture of white noise and a sinusoidal tone
of 150Hz. The resulting observations are shown in Figure
8a. As Figure 8a shows, there was no masking at lower
frequency band despite the introduction of a low-frequency
(150Hz) tone. In particular, there was no presence of the tone
at the intended frequency level. This behavior was similar
to that of fake vibration sounds which also lacked the low-
frequency components present in the audio leakage. We
further investigated the issue by trying to reproduce various
low-frequency sounds on two devices: Motorola Droid X2
and LG G4 smartphones. Droid X2 is an old smartphone,
first released in 2011 whereas G4 is one of the latest devices
announced in 2015.

During our attempts to reproduce low-frequency tones
while testing the speakers of both old (Droid X2) and new
(LG G4) devices, we re-encountered the non-linear behav-
ior of the speaker response. The output audio signal for
low-frequency tones was very low, barely registering on
the microphone. Any attempts to increase the gain would
inadvertently result in clipping of the signal producing
unwanted harmonics at higher frequency levels with no
improvement at the intended low frequency. We expected
better performance from LG G4 smartphone featuring an
improved speaker but the results were only slightly better
(Figure 8b). The speaker was barely an improvement over
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(a) Frequency spectrogram for the vibrations recorded
by Droid X2.

(b) Frequency spectrogram for the vibrations recorded
by LG G4.

Fig. 8. Spectrum for acoustic leakage captured through different devices. Color intensity in the spectrum is proportional to energy in the frequency
band with blue color indicating lowest energy per frequency and red being the highest energy contained per frequency.

the Droid X2 speaker suffering from the same drawbacks
of non linearity and clipping. Since the inbuilt speakers of
the smartphones did not fulfill our purpose, we turned to
other setups where we could obtain better speaker quality
for improved sound reproduction.

7.3 Enhancing Vibreaker with Low Frequency Tone

While smartphone speakers may be limited in their ca-
pacity to reproduce low frequency sounds (sub 300Hz),
we can try to boost their capabilities by complementing
them with better hardware. Such an approach has been
used in the industry by introducing a case like system
with built-in speakers and/or a separate audio engine to
boost the quality of smartphone’s speaker [24], [25], [26].
While [24] and [25] are geared towards iPhones, [26] is
offered as an accessory for Moto Z family of phones. These
accessories can be put on as a case on the phone (Figure 9).

Fig. 9. JBL Soundboost case for
Motorola Z series of smartphones.

We simulated this con-
cept by taping a small
portable speaker to our
device and playing the
sound through it. This
setup also emulated the
scenario where the receiv-
ing device could have an
inbuilt powerful speaker
like a payment terminal
or high end media de-
vices e.g. a smart televi-
sion. For our experiments,
we used three different
portable speakers Altec [27], Sony SRS-XB2 [28] and JBL
[29]. The frequency specifications for the tested speakers are
presented in Table 1. In order to test the effectiveness of
speakers in producing low frequency sounds, we played a
150Hz sinusoidal tone through each speaker and observed
the recorded signal in frequency domain.

Since a tone below 150Hz distorted the response from
Altec speaker, we used 150Hz tone in our next stage of
experiment.

We connected the speaker to the smartphone via an
audio cable (or bluetooth) while rest of the experimental
setup was similar to our previous attack experiment (Section
7) under similar threat model (Section 4). The masking
sound that was used to obfuscate audio leakage was a mix

of white noise and a low-frequency tone (150Hz). We gener-
ated two separate tracks containing white noise (generated
using noise generator functionality in Audacity) and 150
Hz tone (generated using tone generator functionality in
Audacity) which were then mixed and rendered to form
a new track. The low-frequency tone helped in masking the
low frequencies of the audio leakage while the white noise
spread across rest of the frequency spectrum masked the
audio leakage at higher frequencies.

During our experiments, we observed the effectiveness
of masking signal against co-located adversary. We also
observed the effect of sound level of the masking signal in
the event of clipping. This was of particular importance as
we were operating around the lowest frequency response
for some of the tested speakers.

TABLE 1
Frequency response for tested speakers

Speaker
Frequency Response

(in Hz)
Altec Lansing Mini H2O Speaker Not specified

JBL Clip Portable Bluetooth Speaker 160-20,000
Sony SRS-XB2 Speaker 20-20,000

The results for the portable speaker are shown in Fig.10a.
The frequency spectrum did not show the presence of au-
dio leakage resulting from vibrations, particularly at low
frequencies (50Hz-250Hz). The graph of the sum of FFT
coefficients vs time showed that the quality of audio leakage
degraded to an extent that it became very hard to choose a
suitable threshold to determine a constant period of vibra-
tion. While the spikes in the graph may indicate towards
presence of vibration, the resulting pattern could not be
decoded into a valid PIN making the detection infeasible.

This observation showed that external portable speaker
had the required sound reproduction quality that was found
lacking on the inbuilt smartphone speakers. We also mea-
sured the sound level of the masking signals via a sound
level measurement application for Android phone and
recorded the sound level at a distance of 10cm. We observed
that the optimal sound level for producing low-frequency
sound of an amplitude sufficient to mask the audio leakage
from vibration sounds was around 58 decibels. This sound
level is approximately equal that of conversational speech
and thus not considered harmful to the human ear.
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(a) Frequency spectrogram of the audio signal in presence of
masking sound

(b) Frequency spectrogram of the audio signal in presence of
masking sound after noise filtering.

Fig. 10. Characterstics of the audio signal in presence of masking sound from Sony SRS-XB2 speaker before and after noise filtering. Color intensity
in the graph is proportional to energy in the frequency band with blue color indicating lowest energy per frequency and red being the highest energy
contained per frequency. Sum of the FFT coefficients indicates the estimated energy at the time instant.

7.3.1 Security under Sophisticated Attacks

In this section, we will evaluate the masking effectiveness
of the white noise boosted with low-frequency tones against
some attack vectors that may be used by the adversary for a
more sophisticated analysis of the eavesdropped signal. The
attack techniques that we will discuss here would involve
noise filtering and source separation techniques.

Noise Filtering: The defense mechanisms that we studied
till now, relied on deliberate injection of a masking signal in
the environment for obfuscating the audio leakage during
vibrational pairing. From the adversary’s point of view,
the masking signal was the noise accompanying the audio
leakage (that was to be acquired and decoded). Hence, the
adversary could try to remove or suppress the noise using
noise removal algorithms.

Since a co-located adversary had the ability to process
the eavesdropped signal offline and recover the information
from the audio leakage, we repeated the attack experiment
(Section 7) according to our threat model (co-located at-
tacker) with the masking signal comprising of white noise
with a low-frequency tone of 150Hz that was capable of
masking the audio leakage from the vibrations at the low-
frequency bands as detailed previously.

To evaluate the efficiency of our masking signal against
noise filtering, we applied the noise reduction technique
called “spectral noise gating” to the eavesdropped signal.
This technique is used in most of the audio processing
software tools like Audacity. We chose a short sample from
the eavesdropped signal as the noise profile and applied
it to the signal to be removed as noise. This process could
be repeated multiple times until satisfactory results were
obtained. The results for the Sony SRS-XB2 speaker are
shown in Fig.10b. and they show no indication of the audio
leakage from the vibrations in relevant part of the frequency
spectrum. This affirmed the effectiveness of masking signal
at hiding the audio leakage from the vibrations.

7.3.2 Effect on Vibrational Sensing

In a pairing mechanism based on vibrations like PIN-Vibra
[9], the receiving device uses its accelerometer to read the
vibrations and then decode it based on the protocol. The

masking signal, proposed in this work, comprised of a low-
frequency tone along with the white noise. The bass effect
of the low-frequency tone has a tendency to produce deep
rumbling sounds that have the capability of producing faint
vibrations in the speaker. This effect may negatively affect
the accelerometer readings of the receiving device that could
have an negative impact on the accuracy of the vibrational
decoding and thereby the success of the pairing process.

In order to test the impact of the masking signal on
the ability of the receiving device to decode the vibra-
tions correctly, we collected accelerometer readings in the
background on the receiving device during the vibrational
pairing in the presence of masking signal (as proposed in
Section 7.3). We recreated the experiment setup as in Section
7.3. We play the masking sound (white noise mixed with
a 150Hz tone) at different loudness level and gauge the
effect of the masking sound on the receiver as measured
by the accelerometer. We use Motorola Droid X2 as the
sender, Sony SRS-XB2 as the external speaker generating the
masking sound, and Samsung Galaxy S6 as the receiver.

We plot the bit error rate for the receiver against multiple
thresholds for the tested loudness levels. In Section 7.3, we
proposed 58dB as an appropriate sound pressure level for
the masking sound. A louder masking sound would always
be better at hiding the vibration sounds but may also cause
vibrations on the smartphone (especially low frequency
tones) that may impact the readings on the receiving device.
Figure 11 shows bit error rate at the receiving device in
presence of different loudness levels of the masking sound.
We observe that at all the loudness levels ranging from 53dB
till 82dB, for at least one threshold value, bit error rate falls
to 0 i.e. the transmitted PIN is successfully decoded.

7.4 Security against Motion Sensor Exploits

While our threat model consists of a co-located acoustic
eavesdropping adversary that exploits vibrations sounds,
there exists another exploit that eavesdrops on motion
sensors thereby compromising vibration based pairing pro-
tocols. This class of co-located adversary can trick the
unsuspecting victim in installing a malicious application
on their IoT device (smartphone) that eavesdrops on the
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(a) Loudness level = 53dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
.0

1

0
.8

2

0
.6

7

0
.5

5

0
.4

4

0
.3

6

0
.2

9

0
.2

4

0
.2

0

0
.1

6

0
.1

3

0
.1

1

0
.0

9

0
.0

7

0
.0

6

0
.0

5

0
.0

4

0
.0

3

0
.0

3

B
it

 E
r
ro

r
 R

a
te

Threshold

(b) Loudness level = 57dB
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(c) Loudness level = 63dB
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(d) Loudness level = 70dB
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(e) Loudness level = 78dB
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(f) Loudness level = 82dB

Fig. 11. Bit error rate against threshold values for PIN “4562” at the receiving device with different loudness level of masking sound. Since we begin
from maximum threshold value, the x axis is in descending order.

motion sensor readings and forwards them to the attacker.
The attacker has now access to the same sensor readings
as the receiving device thereby leading to leakage of the
transferred PIN/pairing information.

This exploit works due to the underlying assumption
that the vibration channel (AS-OOB channel in the protocol)
can not be eavesdropped directly, which is not true for this
exploit. Android platform also does not impose any usage
permissions (zero-permission) on an application for reading
the motion sensor readings. This leads to an unrestricted
access for a malicious application that can monitor ac-
celerometer readings during the vibrational pairing process
and extract the transferred PIN/passphrase.

Our threat model only considers a co-located adversary
on the transmitting device (IoT hub) as the device already
knows the PIN/passphrase that it is going to transfer while
the effect on its accelerometer during the vibrational pairing
leaks this confidential information. The receiving device in
our model is usually a dedicated IoT device (smart lock,
smart bulb, smart thermostats etc.) that usually would not
allow access to internal sensors as opposed to the IoT hub
i.e. smartphone which is a multipurpose device and allows
unrestricted access to motion sensors.

We observed the effect of vibration pattern generated
during the pairing protocol on the accelerometer sensor.
The readings along z axis are shown in Figure 12a and
it can be observed that the pattern is visible in the plot.
These vibrations are also visible in the spectrum as dark
red bands in Figure 12c. Thus, these readings can be ex-
ploited by an adversary to extract information about the
PIN/passphrase transferred during the vibrational pairing.
Mohamed et al. [10] proposed SMASheD framework for
stealthily modifying various sensors on Android platform.
SMASheD uses Android Debug Bridge (ADB) for installing
a service on Android along with shell privileges that allow
reading and writing to sensor files. For launching this attack,
two scripts are used that push the service from the computer
to the android device via USB and then launch it. Mohamed

et al. [10] used the proposed framework as a potential
security exploit against Android sensors. Shrestha et al. [11]
incorporated SMASheD as a potential defense mechanism
“Slogger” against sensor based touchstroke logging attacks.
Touchstroke logging attacks work by inferring the start
and end of a finger touch on a smartphone’s screen by
eavesdropping on motion sensor readings. Slogger aims to
inject fake sensor readings into the system file that logs the
motion sensor readings from the sensor hardware. The fake
readings serve as a noise cover to the susceptible real sensor
readings. We apply a similar idea as “Slogger” to defend
against this class of motion sensor exploiting adversaries
that could learn the vibration patterns from the motion
sensors of the transmitting device (IoT hub).

We used the SMASheD framework to install a service
on the transmitting device (Droid X2 in our experiments)
that injects fake accelerometer readings into the accelerom-
eter system file. The accelerometer system file logs the
accelerometer readings obtained from the sensor hardware
and allows unrestricted “read”operation. Since the injected
readings from SMASheD should be similar to accelerom-
eter’s response during the transmitting device’s vibration,
we determined the minimum and maximum accelerometer
readings during vibration along x, y and z axis to imitate
the actual accelerometer readings during vibrations.

Once we determined the minimum and maximum ac-
celerometer readings during vibrations, we generated ran-
dom numbers in that range and injected them into the ac-
celerometer system file at random intervals lasting less than
time duration between successive accelerometer events (in-
verse of sampling frequency and measured in milliseconds).
The minimum and maximum readings for accelerometer
sensor during a vibration event were <-70, 120>, <-80, 80>,
and <0, 1600> for x, y and z axis respectively. We plot
the accelerometer readings, along z axis, as recorded by a
malicious application residing on the transmitting device
and eavesdropping on accelerometer readings while our
defense injects fake sensor readings similar to vibrations
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(a) Vibration pattern in clear
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(b) Vibration pattern masked by fake injected readings
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(d) Spectrogram of vibration pattern masked by fake
injected readings

Fig. 12. Vibration patterns as recorded on accelerometer for PIN “4562” in absence and presence of fake injected readings

that mask the real vibration events in Figure 12b. When
compared to Figure 12a, we are unable to determine which
sensor readings correspond to actual vibrations and which
readings correspond to fake injected vibrations.

Observing the spectrum in presence of our enhanced
defense in Figure 12d, we notice that the red bands, cor-
responding to the vibrations in Figure 12c have completely
disappeared. Since the injected fake accelerometer readings
are similar to the vibration readings, there no longer exists
a contrast between the background noise and vibrations
in the accelerometer signal. Our defense has enhanced the
background noise with fake readings so that it is now
comparable to vibration patterns and so we are unable to
spot any features that may characterize vibrations in the
spectrum. Thus we are able to mask the effect of vibrations
affecting the accelerometer during the pairing process.

Thus, we believe that the masking signal may not have
any effect on the decoding accuracy of the receiving device
while enhancing the security by obfuscating the audio leak-
age resulting from the vibrations at the same time.

8 VIBREAKER AGAINST REMOTE ATTACK

So far, we have discussed acoustic eavesdropping attacks
involving a proximity attacker and a co-located attacker eaves-
dropping on pairing of IoT devices. The advantage of a
proximity attacker lies in the fact that proximity scenario
is more plausible and allows the attacker to eavesdrop on
the acoustic leakage covertly. On the other hand, when
the attacker is co-located on the device itself, the attack
itself becomes more powerful and just masking the acoustic
leakage emanating from vibrations during pairing using
background noise (white noise) is not sufficient. In this
section, we will discuss a new attack model that involves a

Fig. 13. Remote eavesdropping attack model for vibration based pairing
of IoT devices

remote attacker eavesdropping on the vibrations during the
pairing process. In this attack model, we assume that the
user is trying to pair her device (for example, smartphone)
to her smart devices while she is on call using the smart-
phone. As a real life example, a user may already be on call
with another person while she attempts to pair her phone
with one of the smart devices say, a smart thermostat. To
pair the phone with the thermostat, she momentarily places
the phone in contact with the thermostat without hanging
up the call or placing the call on hold. This is a possible use
case scenario as the pairing process disrupts the call only
momentarily taking only a few seconds.

We also assume that the entity on the other end of
the user’s call plays the role of a malicious adversary or
attacker. Since the user has no way of knowing if the
attacker is eavesdropping on the conversation, the attacker
can choose to record the whole call or wait for the moment
when the user begins the pairing process. For best quality
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(a) Frequency spectrum of the audio signal as captured by the
attacker.
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(b) Bit error rate plotted against threshold values. Since we begin
from maximum threshold value, the x axis is in descending order.

Fig. 14. Acoustic characteristics of the vibration leakage and acuracy of an attacker for PIN “4562” under remote attack model. Color intensity in the
spectrum is proportional to energy in the frequency band with blue color indicating lowest energy per frequency and red being the highest energy
contained per frequency. Sum of the FFT coefficients indicates the estimated energy at the time instant.

of eavesdropping, the attacker may choose to put the call
on speaker so as to amplify the vibration sounds. The
attack model is described in Fig.13. The transmitting device
while on call with the attacker is used for pairing with a
smart device by bringing it in physical contact with the
receiving device. During the pairing, the transmitting device
generates vibrations that are picked by the receiving device
and decoded for pairing. However, the sounds generated
during vibrations are also picked up by the microphone
of the transmitting device and thereby are delivered to the
attacker by the voice call connection.

8.1 Attack Experiment under Remote Attack Model

The experiment setup for the attack model constitutes a user
calling the attacker using her smartphone. We used Nexus
5X phone at the user’s end to place and call and also to
act as the IoT device generating the vibrations. We also use
Samsung Galaxy S6 as the receiving device that reads the vi-
brations, decode it and authenticate the transmitting device.
On the other end of the call, the attacker uses IPhone 6s to
receive the call and Macbook Air (2013) inbuilt microphone
to record the vibrations. While we used normal phone call
during the experiment, any voice call applications (Skype,
Viber, Whatsapp etc.) can be used for this purpose.

The spectrum of the captured vibration sounds on the
attacker’s end are depicted in Fig.14a. Comparing this fre-
quency spectrum against frequency spectrum observed in
Fig.1b and Fig.6a shows that the audio emanations from
vibrations are more distorted and diffused unlike the cap-
tured audio in proximity attack model and low frequency
audio captured under co-located attack model. To decode the
captured audio, we use the same algorithm as in proximity
and co-located attack models described iin previous sections
but introduce minor changes to some of the parameters. We
restrict the energy estimate in the frequency band of 3kHz to
4kHz and increase the window size for each vibration from
200ms to 210ms. The corresponding bit error rate plotted
against threshold is shown in Fig.14b.

The bit error rate starts at 47% because the binary rep-
resentation of PIN 4562 has 8 bits set and for maximum
threshold value, the bit string is all zero bits leading to a bit
error rate of 8/17 = 0.47. For a threshold value of 18.4, the
bit error rate drops to 0% indicating successful recovery of

the PIN from acoustic leakage of vibrations as captured by
the remote attacker.

8.2 Vibreaker against Remote Attack

As we discovered in previous section that vibration based
pairing for IoT devices runs the risk of being eavesdropped
upon if the IoT hub (i.e. smartphone) is on call with the
attack using normal phone service or one of the many VoIP
applications. To safeguards in such scenario, we tested our
masking based defense, Vibreaker against a remote attacker
as described in Section 8.1.

The frequency spectrum for the audio signal recorded
at the remote attacker’s end during the pairing process is
depicted in Fig.15. On the spectrum, the acoustic leakage
from the vibration of the IoT hub can be clearly seen in
the lower frequency band (50Hz-300Hz). To quantify the
acoustic leakage in the spectrum, we summed up the sum
of FFT coefficient in a narrower frequency band of 200Hz-
300Hz that we can observe in the lower subfigure of Fig.15.
Using similar attack principles as described previously in
this work, we were able to decode the correct PIN value that
was transferred from the IoT hub to the IoT device in our
experiment. The graph depicting bit error rate for different
threshold values is seen in Fig.16. As we can observe in the
graph, the bit error initially starts at 47% but drops down to
0% at a threshold value of 11.7 that indicates that the correct
PIN value has been decoded by the attacker. This results
is similar to performance of Vibreaker against a co-located
attacker (Section 7) where white noise alone is unable to
mask vibration sounds at low frequency bands.

8.3 Secure Pairing with White Noise and Low Fre-

quency Tones

Since Vibreaker is unable to mask the acoustic leakage at sub
500Hz frequencies, we use the same defense mechanism that
we utilized against a co-resident attacker due to similarities
in the capabilities of the attacker. For both co-located and
a remote attacker, the recording device is the inbuilt micro-
phone in the IoT hub which is the closest location to the
source of vibrations. In both scenarios, white noise alone is
unable to mask the acoustic leakage from vibrations at low
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Fig. 15. Frequency spectrum of the audio signal captured by a remote
attacker in presence of Vibreaker. Color intensity in the graph is propor-
tional to energy in the frequency band with blue color indicating lowest
energy per frequency and red being the highest energy contained per
frequency. Sum of the FFT coefficients indicates the estimated energy
at the time instant.
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Fig. 16. Bit error rate plotted against threshold values in remote at-
tack scenario under Vibreaker defense. Since we begin from maximum
threshold value, the x axis is in descending order.

frequencies so we boost the defense mechanism by adding
low frequency tone to the white noise signal.

We play the enhanced masking signal (white noise
added with low frequency tone) similar to the defense
setup in Section 7.3. the frequency spectrum of the recorded
audio signal from the remote attacker is depicted in Fig.17.
The lower frequency band does not show any presence of
acoustic leakage from the vibrations as opposed to Fig.15
which had only white noise to mask the vibration sounds.
The graph of bit error rate against various threshold values
show that the minimum threshold value that could be
achieved was 35%. The bit strings obtained at both threshold
values however were not valid bit strings as they lacked
the necessary header (“110”) that is attached to the bit
representation of the PIN for indicating the beginning of
a valid pairing transmission.

9 SUMMARY AND DISCUSSION

The emerging field of IoT devices and their spreading use
everyday exposes this nascent technology to various secu-
rity risks. Since these devices are low energy with limited
computational power, traditional security mechanism de-
signed do not work in the context of IoT devices as expected.
Additionally, their tendency to collaborate with each other

Fig. 17. Frequency spectrum of the audio signal captured by a remote
attacker in presence of Vibreaker and low frequency tones. Color inten-
sity in the graph is proportional to energy in the frequency band with blue
color indicating lowest energy per frequency and red being the highest
energy contained per frequency. Sum of the FFT coefficients indicates
the estimated energy at the time instant.
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Fig. 18. Bit error rate plotted against threshold values in remote attack
scenario under Vibreaker combined with low frequency tones. Since we
begin from maximum threshold value, the x axis is in descending order.

by exchanging information makes a secure communication
channel a necessity. Pairing of devices facilitates in estab-
lishing a trusted way of data transfer between devices and
involves the exchange of a shared short key or passphrase.
In this paper, we studied pairing among IoT devices (es-
pecially an IoT hub and other IoT devices) by using an
auxiliary channel (OOB channel). In particular, we focused
on the use of vibration as a means of communicating shared
key or PIN among the IoT devices and evaluated its security
against an acoustic eavesdropping attack.

We implemented an ON-OFF vibration scheme [9] and
used it for pairing two IoT devices by transferring a 4-
bit PIN. To create an acoustic eavesdropping attack, we
simulated such an attacker as described in [18] that pro-
poses an acoustic eavesdropping attack against pairing of
constrained devices such as an IMD and its reader. We study
the attack in multiple scenarios by placing the attacker at
different locations. We also propose a signal masking based
defense mechanism for thwarting the acoustic eavesdropper
and evaluate it under the studied scenarios.

In a proximity eavesdropping scenario, we showed that
an attacker can decode vibration sounds successfully from a
distance of 15cm. We also showed that if white noise were
to be injected in the environment surrounding the pairing
devices, it would make it very hard for an attacker to extract
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vibration sounds from the resulting audio that contains both
acoustic leakage from vibrations and the masking signal. We
also tested fake vibration sounds as possible masking signal
for the acoustic leakage from vibrations and found it viable
for securing the process. Enhancing the attacker’s capability
by using noise filtering tools did not increase the accuracy
of the eavesdropping attack.

Our next attack scenario placed the eavesdropping at-
tacker on the pairing device (IoT hub) itself in the form
of a malicious application residing upon one of the device
that had access to microphone of the device. Such a device
would commonly be a smartphone but could also be smart
speakers such as Amazon Echo or Google Home. For such
an attacker, white noise defense is not effective at hiding the
acoustic leakage. In particular, we found out that due to co-
location of the attacker with the source of vibration, a better
quality of acoustic leakage is picked up by the eavesdropper
especially at low frequencies. As speakers found in low
power constrained devices are designed to produce just
acceptable sound, lower frequencies of the masking signal
that are sub 500Hz may not be reproduced satisfactorily.

Since white noise reproduced from a low powered
constrained device (such as many IoT devices) does not
hide vibrations sounds at sub 1kHz frequencies, we looked
towards introducing low frequency tones via an external
speaker. This could remedy the shortcomings of on-device
speakers responsible for masking acoustic emanations due
to vibrations. We tested the enhanced defense mechanism
with low frequency tone of 150Hz added to the white noise,
both being generated via low-cost external speaker co-
located with the device. We tested the effect of our enhanced
setup on the decoding ability of the receiving IoT device and
found it to absent from its sensor readings.

To evaluate our defense against an advanced attacker, we
applied noise filtering algorithm and found out that noise
filtering did not help the attacker in removing the masking
signal from the eavesdropped audio signal and recovering
the acoustic leakage of the vibrations. Such an attempt by
an attacker resulted in the whole signal being reduced with
barely any audio present in the filtered signal. While this
defense setup required an external speaker, we believe that
for smartphones, better quality external speakers already
exists as phones cases or as external modules that can be
attached to the phone without affecting their usability.

To complete the security of our defense, we proposed
an additional measure that prevents a co-located adversary
on the transmitting device to exploit the accelerometer
readings to determine the information transferred during
noisy pairing protocol. The proposed method works on a
similar notion as noisy vibrations by injecting fake read-
ings in accelerometer readings thereby masking the effect
of vibrations of the transmitting device on its accelerom-
eter. Since the injected readings are done programatically,
the enhanced defense is transparent to the user. We also
observed the effect of noisy vibrational pairing on the
receiving device’s capability of decoding the transmitted
PIN/passphrase in presence of masking sound at different
loudness levels. We show that masking sound at different
loudness levels does not affect the ability of the receiving
device to correctly decode the PIN/passphrase.

The rise of voice over IP (VoIP) applications has led

to multiple communication options in addition to normal
voice calling facility. We investigated the prospect of a
malicious entity eavesdropping over VoIP calls including
normal phone calls and potentially recording vibrations
sounds during pairing. We recorded vibrations sounds over
a normal call and discovered that these sounds were audible
after being recorded on the other end of the call. Moreover,
they could also be decoded using similar technique as
previous eavesdropping attacks leading to full disclosure
of the pairing secret being shared between the two devices.

We tested the remote eavesdropping attacker against
Vibreaker and showed that such an attack model is suc-
cessful in decoding the transmission into the exchanged
information in a similar manner to a co-located attack model.
The acoustic leakage from the vibrations was visible at low
frequencies that demonstrated the inability of white noise
in masking alone. We then tested the remote eavesdrop-
ping attack model against enhanced defense that combined
Vibreaker with low frequency tone. The enhanced defense
was found out to be sufficient at thwarting the remote
attacker as the remotely captured audio signal could not
be decoded correctly into the transferred PIN for all values
of the threshold in the relevant frequency bands.

10 CONCLUSION

In this work, we showed that vibration based pairing proto-
cols for constrained devices like those comprising IoT net-
work, can be defended against an acoustic eavesdropping
attack by adding artificial noise to the environment. We
showed that traditional acoustic eavesdropping mechanism
that places the attacker in proximity of the pairing devices,
can be impeded by using white noise as a masking signal
to cloak audio leakage resulting from vibrations. We also
examined a novel scenario where the eavesdropping may
be done through the device’s microphone itself or a spying
bug attached on the device. This setup, termed as “co-
resident or co-located” attack, proved to be more potent than
proximity attack as “co-located” attack is able to capture
more details of the audio leakage than the proximity attack.
To defend against our new attack model, we demonstrated
that white noise alone was not sufficient and needed to be
enhanced with the addition of low frequency tones through
an external speaker. This step was also necessitated by the
fact that smartphone speakers were not able to reproduce
low frequency tones at sufficient intensity to cloak the audio
leakage from vibrations in our experiments.

The “co-located” adversarial model was also expanded
to include motion sensor exploits that can compromise the
on-board motion sensors like accelerometer on the IoT hub
to learn the transferred secret via vibrations. We extend our
defense by complimenting it by injecting fake accelerometer
readings that are able to mask the actual vibration effect
on the accelerometer. We also examined the possibility of
a remote attack model that records the acoustic leakage
resulting from the vibration over a remote connection such
as phone call or a VoIP connection. Such a situation is
plausible if one of the devices involved in the pairing
process is a smartphone on call with a dishonest entity.
This attack model was successful against Vibreaker but
enhancing Vibreaker with low frequency tones cloaked the
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acoustic leakage to a sufficient degree so as to impede the
attack. Our analysis shows that while vibration pairing may
seem to be an attractive mechanism for ensuring the security
and trust in an IoT network, it needs to be protected against
acoustic side channel attacks by defensive measures such as
masking signals that are low cost and easy to implement.
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