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Abstract—Aiming at discovering hidden different data
structures in big data from different perspectives, a tensor-
based multiple clustering method has been developed re-
cently, which can be widely used in Industrial IoT to im-
prove production and service quality. However, due to the
high computational cost and huge volume of data, out-
sourcing computing to relatively inexpensive cloud servers
can greatly save local costs, but there is a high risk of
revealing user privacy. To address the problem above, a pri-
vacy preserving tensor-based multiple clustering method
on the secure hybrid cloud is proposed. The proposed
scheme utilizes homomorphic cryptosystem to encrypt ob-
ject tensors, then employs cloud servers to completely
implement multiple clustering calculation over encrypted
object tensors. Furthermore, a series of related security
sub-protocols are proposed to support privacy preserving
tensor-based multiple clusterings. In the proposed scheme,
only encryption and removing perturbation are performed
on the client, which is very lightweight for users. Experi-
mental results show the proposed scheme is accurate and
efficient when clustering objects to different groups, while
no private or additional information is leaked. Moreover,
when employing more cloud nodes, the scheme has high
scalability, thus it is very suitable for clustering Industrial
IoT big data.

Index Terms—Industrial IoT, privacy preserving, multiple
clusterings, cloud computing, homomorphic cryptosystem.
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W ITH the advent of “Industry 4.0” era, Cyber-Physical
Systems (CPS), computing systems of Industrial

Internet-of-Things (IoT), have been replaced by more ad-
vanced Cyber-Physical-Social Systems (CPSS), integrating
cyber space, physical space and social space [1]. In CPSS,
a variety of complex and massive data is collected from
industrial control systems, automated production systems to
smart products and user experiences, which contains abundant
knowledge and tremendous value [2]. In-depth mining and
exploiting these knowledge will not only make industrial
automation more efficient and effective, but also enable a
new level of product personalization at a lowest cost. As an
emergence research field of data mining, multiple clusterings,
has been extensively studied in recent years [3]. Compared to
the traditional clustering, which only focuses on discovering
a single grouping of objects, multiple clusterings can generate
multiple different clustering results at the same time from
different perspectives of the data, revealing different structures
hidden in the data, and satisfying multiple analytic tasks of
CPSS.

However, the existing multiple clustering researches focus
on low-dimensional and single-domain data, which is difficult
to apply to large-scale heterogeneous data scenarios in the
real-world. Specially, a large number of perceptual devices,
network communications as well as social relations, generate
large-scale heterogeneous data from multiple dimensions, in-
cluding text, picture, audio and video. Diverse modalities and
characteristics appear in big data of different sources. Usually,
applications on big data have to face enormous numbers
of high dimensional records, causing high complexities of
time and space. To address the above problems, a tensor-
based multiple clustering (TMC) approach was proposed in
the previous work [4]. But with the rapid growth of data size
and volume, performing TMC in real-time requires higher
computational capabilities and more storage, while cloud
computing can provide a good solution with the powerful
computing capabilities and huge storage resources.

Nowadays, more and more enterprises are willing to out-
source their data to cloud, such as industrial production
indicators, equipment operating status, meter measurement,
etc., so as to save local computing and management costs. The
cloud acquiring all of the computing and storage resources can
process and analyze data in real-time, as well as manage them
automatically through softwares. Moreover, since the cloud
integrates a large number of correlative data and advanced data
mining techniques, it can provide more accurate information
and more intelligent services for enterprises. Therefore, it



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2871174, IEEE
Transactions on Industrial Informatics

would be more efficient to carry out the TMC algorithm with
cloud computing when facing CPSS big data. However, di-
rectly outsourcing data to cloud will reveal the user’s sensitive
or private information as the cloud service providers may be
curious or malicious [5]. Once the information is leaked, it
may threaten the production safety of enterprises and even
people’s life. For instance, if electricity consumption data
of enterprises are leaked, these enterprises would be under
the risks of security breach, such as the production activity
detection. Hence, this study focuses on a privacy preserving
TMC approach on cloud, paving the way for its widespread
use in big data analysis and mining of Industrial IoT.

In recent years, cloud computing security has received wide
attention from academia to industry, emerged a large number
of privacy preserving approaches. One of the effective ways is
to encrypt data before outsourcing them to cloud, then all cal-
culations are performed over encrypted data on cloud, until the
encrypted final result is returned to the client for decryption. In
this process, the cloud does not learn anything about sensitive
data and intermediate results, guaranteeing the security of us-
er’s privacy. However, implementing privacy preserving TMC
over encrypted data brings some issues and challenges. This
study mainly takes into account four challenges: (1) To protect
user’s private and all intermediate results, various security op-
erations related to TMC are indispensable, including addition,
multiplication, division, comparison, exponentiation, and so
on. (2) To ensure the validity of clustering results, the distance
of object tensors computed on ciphertexts are supposed to
be of the same accuracy as plaintexts as possible, requiring
an efficient homomorphic cryptosystem and the handling of
floating point numbers. (3) The client computing cost should
be reduced as much as possible during the clustering process.
(4) To improve efficiency and scalability, it needs the rational
use of cloud resources to meet the high cost of computing and
the growing amount of data.

To address the above challenges, this paper proposes a
privacy preserving TMC (PPTMC) method using homomor-
phic cryptosystem on a hybrid cloud model. The PPTMC
method is capable of effectively clustering CPSS big data by
outsourcing data and computations to cloud without disclosing
any additional information. Moreover, it has high scalability
when more cloud nodes are employed to its computation. To
meet the requirement of TMC for all kinds of mathematical
operations and fast encryption, PPTMC utilizes the formal
Paillier cryptosystem. However, Paillier cryptosystem does not
support exponentiation operation over encrypted data, thus the
work presents a secure exponentiation operation based on a
discriminant method which is suitable for PPTMC. The major
contributions of this paper can be summarized as follows:
1) To support the exponentiation operation required by the

calculation of distance, the work designs a secure expo-
nentiation (SE) protocol based on a discriminant method.
Then secure attribute weight ranking (SAWR) protocol and
secure selective weighted tensor distance (SSWTD) proto-
col are developed as sub-routines of PPTMC. In addition,
to implement floating point calculation, magnification and
minification are utilized in the above protocols.

2) A novel complete PPTMC method over encrypted data is

TABLE I
TABLE OF COMMON NOTATIONS

Symbol Definition
X original object tensor
[[X ]] encrypted object tensor
[[Ta]] encrypted association tensor
[[Ttr]] encrypted transition tensor
[[Tw]] encrypted weight tensor
[[Tmv]] encrypted multiview tensor
M original matrix M
[[M ]] encrypted matrix
v original vector v
[[v]] encrypted vector
a original integer
[[a]] encrypted integer
σ regularization parameter
α probability parameter
λ magnification factor

present based on the above security protocols. In the pro-
posed scheme, all expensive computing tasks are offloaded
on cloud without revealing or deducing any private infor-
mation, not merely enhancing its efficiency and scalability,
but also protecting sensitive information. Specially, once
the encrypted data are uploaded to the cloud, the client
no longer participates in the multiple clustering process,
significantly reducing the user’s computational burden.

The rest of the paper is organized as follows. Section II in-
troduces preliminaries used in the work. Related basic security
protocols are provided in Section III, including the proposed
SE, SAWR and SSWTD protocols. Section IV describes the
proposed PPTMC approach. Evaluations and experiments are
given in Section V. Section VI reviews the related work.
Finally, the whole paper is concluded in Section VII.

II. PRELIMINARIES

This section reviews preliminaries used in the proposed
scheme including TMC clustering algorithm, Paillier cryp-
tosystem and security model. Some common notations used
in the proposed scheme are shown in Table I.

A. TMC clustering algorithm
In the previous work [4], a tensor-based multiple clustering

method is proposed. The goal of TMC is to reveal latent
different data structures in big data from different perspectives.
Specially, based on the integration of multi-source information,
it allows the user to select different feature combination-
s according to different applications, resulting in different
clustering results, so as to meet the requirement of big data
multiple analysis tasks. The main idea of TMC is as follows:
(1) Data objects tensorization transforms heterogeneous data to
a unified object tensor model. (2) Weight tensor construction,
that refers to, employing the multilinear attribute weight rank-
ing algorithm to obtain the weight tensor, which can effectively
improve the quality of clustering. (3) Selective weighted tensor
distance (SWTD), that is, the weight factors and selection
coefficients are introduced in tensor distance, indicating the
importance of each attribute combination, as well as providing
flexible selection of desired different attribute combinations
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upon applications. (4) Any clustering algorithm with distances
as input can be chosen to cluster object and produce multiple
clustering results. Here, the proposed method chooses the
relatively efficient clustering by fast search and find of density
peaks (CFS) published in Science magazine [6].

Specially, the definition of SWTD is described as follows.
Given an object tensor X∈ ℜIf1×If2×···×Ifk , x represents the
vector unfolding of X . The SWTD of X and Y is calculated
as

dSWTD =

√
If1×If2×···×Ifk∑

l,m=1

glmwl(xl − yl)wm(xm − ym)

=
√

(w ∗ (x− y))TG(w ∗ (x− y)),
(1)

where wl, wm are weight factors of the location Xi1i2...ik

(corresponding to xl) and Xi
′
1i

′
2...i

′
k

(corresponding to xm),
respectively.

Here, the metric matrix G is defined as

glm =
1

2πσ2
exp

{
−∥pl − pm∥22

2σ2

}
, (2)

where the location distance ∥pl − pm∥2 is given by

∥pl − pm∥2
=

√
v1(i1 − i

′
1)

2
+ v2(i2 − i

′
2)

2
+ · · ·+ vk(ik − i

′
k)

2
,

(3)
where vj(1 ≤ j ≤ k) is the element of feature space
combination vector v ∈ {0, 1}k. When selecting the j-th
feature space, the value of vj is 1, otherwise it is 0.

B. Paillier cryptosystem
The Paillier cryptosystem [7] is proposed as an additive

homomorphic encryption technique with probabilistic asym-
metry and semantic security. Given any ciphertexts [[a]] , [[b]]
and constant m ∈ ZN , it has two homomorphic properties:
(1) homomorphic addition [[a+ b]] = [[a]] ∗ [[b]] mod N2; (2)
homomorphic multiplication [[m ∗ a]] = [[a]]

m
mod N2.

C. Security Model
In secure multi-party computation, a semi-honest model

[8] assumes that any participant party faithfully performs the
protocols with its correct inputs, but during the execution
of the protocols, it always tries to deduce the confidential
information about other parties. Here, a hybrid cloud [9] is a
secure two-party computation model, including a public cloud
and a private cloud. The hybrid cloud has both high security
and high computing power of the two parties. It is assumed that
usually public clouds are provided by renowned IT enterprises
like Amazon and Apple, and private clouds are provided by
credible departments or organizations. Taking into account
reputation, commercial interests as well as legal risks, they
will not collude with each other and maliciously leak user’s
privacy. Hence, the model is practical.

In terms of the relationship of the two clouds, every security
protocol on this model needs the two clouds to work together.
The main idea of these protocols is the public cloud perturbs
the ciphertexts by homomorphic addition and sends them to

TABLE II
TABLE OF EXISTING SECURITY PROTOCOL

Protocol Definition
Secure Multiplication SM([[a]] , [[b]]) → [[a · b]]
Secure Comparison SC([[a]] , [[b]]) → [[a ≥ b]]
Secure Division 1 SD1([[a]] , b) → [[qu1]]
Secure Division 2 SD2([[a]] , [[b]]) → [[qu2]]
Secure Higher-order CFS SHOCFS([[X1]] , [[X2]] , . . . ,[[Xn]]) → [[cl]]

the private cloud; then the private cloud decrypts the perturbed
ciphertexts, does some specific operation on them, encrypts
the results again and sends them back to the public cloud;
finally, the public cloud removes the perturbation from the
encrypted results by homomorphic addition. The private cloud
can not get the plaintexts but only the completely perturbed
plaintexts. The public cloud can not get the plaintexts but only
the ciphertexts which it is unable to decrypt.

III. BASIC SECURITY PRIMITIVES

First, this section introduces existing security protocols
involved in PPTMC. Second, this section proposes a series
of generic protocols as sub-routines of PPTMC. Here, all
protocols obey the rules of the above security model, where
C1 and C2 represent the public cloud and the private cloud,
respectively. Initially, the private cloud generates a public key
pk and a private key sk by using the Paillier cryptosystem, and
publishes pk to the client and the public cloud.

A. Existing Security Protocol
The existing security protocols involved in PPTMC are

listed in Table II, including secure multiplication (SM) [10],
secure comparison (SC) [11], secure division 1 (SD1) [12],
secure division 2 (SD2) [13], and secure higher-order CFS
(SHOCFS) [14].

B. The Proposed Protocols
As sub-routines, some universal protocols are proposed in

order to achieve secure tensor-based multiple cluterings. More-
over, to implement floating point calculation, magnification
and minification are utilized in the protocols.

1) SE Protocol: As there is no homomorphic exponentia-
tion operations in the Paillier cryptosystem, it can not directly
support the secure computation of the SWTD between objects.
At present, the Taylor series expansion is usually used to
convert exponentiation operation into a polynomial function,
involving only addition and multiplication operations [15].
However, it has two main limitations to the proposed method.
First, the low efficiency of Taylor expansion can not to meet
the requirement of secure computation. Second, it needs to
preserve the floating point precision by amplification, while the
Paillier cryptosystem is limited by the size of the plaintexts, so
that it is difficult to achieve an acceptable range of precision.

Observing Eqs. (2) and (3), the numerators of exponent are
0, -1, -2, -3, . . . according to the size of the object tensor, and
there is a fact that smaller exponent corresponds to smaller
exponential result. So the potential exponents in SWTD are
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a series of discrete values, and part of the results of them
are so close to 0 that can be replaced by 0. Aiming at these
characteristics, this work presents an exponentiation operation
method based on discriminant that is summarized in Algorithm
1, the details of which are described as follows.

In line 2, depending on the size of tensor object, C1 selects
the top k maxima from all possible values of x, but discards the
remaining values of which the exponential results are so small
that it is difficult to preserve their precision by magnification.
In general, selecting the top three maxima can achieve a high
enough accuracy.

From line 3 to 5, C1 computes exponential results of the
top k maxima over plaintexts and encrypts them. At the same
time, C1 encrypts the top k maxima as criteria of discriminant.

From line 7 to 10, the algorithm iteratively computes the
discriminated results. Utilizing the SC protocol, C1 with the
encrypted input [[λdx]] and the encrypted criteria, and C2 with
sk securely compare them one by one in line 8. In line 9,
applying the SM protocol, both C1 and C2 securely compute
the discriminated results.

Finally, C1 locally uses homomorphic addition to securely
compute the exponential result in line 11.

Algorithm 1 SE Protocol
Input: C1 has [[λdx]], C2 has sk.
Output: Encrypted exponential result [[λee

x]] only to C1.
1: C1:
2: Select the top k maxima m1,m2, . . . ,mk from all possible

values of x.
3: for i=1 to k do
4: Compute [[λee

mi ]], [[λdmi]].
5: end for
6: C1, C2:
7: for i=1 to k do
8: [[ci]]← SC([[λdx]] , [[λdmi]]).
9: [[λesi]]← SM([[ci]] , [[λee

mi ]]).
10: end for
11: C1: [[λee

x]]←
k∏

i=1

[[λesi]].

Theorem 1: The proposed SE protocol is secure on the
semi-honest model.

Proof : The plaintexts appearing in line 2 are potentially
possible values that can be made public. Here, except for the
size of tensor, they do not represent any privacy information
about the data. Since the size is not actually a category
of privacy, line 2 is secure. Line 4, 11 use the Paillier
cryptosystem which is semantically secure. Moreover, Line 2,
4, 11 do not interact between C1 and C2. Line 8 and 9 apply
the SC protocol and SM protocol, respectively, which both
have formal proofs that ensure the security of them under the
semi-honest model. In conclusion, the proposed SE protocol
is secure.

Note that, the SE protocol is suitable for exponentation
operations with discrete exponent inputs, including the one
that required by SWTD. Hence, the proposed SE protocol has
a certain versatility.

2) SAWR Protocol: Based on the multilinear attribute
weight ranking algorithm proposed in the previous work
[4], this scheme proposes the SAWR protocol depicted in
Algorithm 2. C1 with the encrypted Kth-order transition tensor[[
λwT (l)

tr

]]
, and C2 with sk securely compute the encrypted

attribute weight ranking vectors [[λwwl]], which are only
known to C1, for 1 ≤ l ≤ k.

At the beginning of the SAWR protocol, C1 encrypts the
probability parameter α. In the following steps, the attribute
ranking vector for each feature space is securely computed.

In order to ensure that the Z-eigenvector converges linearly
to the unique solution for any initial vector, C1 randomly
initializes and encrypts vector w0 and u whose sum equals
1, respectively.

From line 7 to 23, utilizing the secure i-mode product
definition proposed in [13] and the SM protocol, C1 and C2

jointly and iteratively compute the ciphertexts
[[
λw(wj)t

]]
,

but they learn nothing about user’s privacy information during
the whole process. Specially, repeatedly performing multipli-
cations can cause quick accumulation of the magnification
factors, resulting in overflow of the ciphertexts, hence the SD1
protocol needs to be used to remove the extra magnification
factors.

Finally, considering the extended dimensionality of the
transition tensor, C1 takes the first Ifl elements of [[λwwj ]]
corresponding to each feature space as encrypted ranking
vector [[λwwl]] locally in line 24.

3) SSWTD Protocol: In the SSWTD protocol, C1 holds en-
crypted object tensors [[λoX ]] and [[λoY]], metric matrix [[λeG]],
weighted tensor [[λwTw]], and C2 possesses the private key
sk. Here X and Y denote Kth-order tensors ℜIf1×If2×···×Ifk ,
where If1 , If2 , . . . , Ifk represent the dimensions of K feature
spaces, respectively. The SSWTD protocol focuses on securely
calculating the encypted SWTD [[λodSWTD]]. Notice that the
square of the distances among objects is another form of the
distances without root operations, thus the former is chosen
here. This protocol does not reveal any relevant information
about X , Y , G or Tw to C1 or C2. The calculation of SWTD
follows the Eq. (1).

Algorithm 3 shows the main steps participating in SSWTD.
Briefly, from line 1 to 15, C1 and C2 federatively compute
[[λodlm]] using the SM protocol, and adopting the SD1 protocol
to prevent overflow after every multiplication, for 1 ≤ l,m ≤
If1 × If2 × · · · × Ifk . Note that the outputs of the SM and
SD1 protocols are known only to C1. Finally, C1 computes
[[λodSWTD]] locally by applying homomorphic properties on
[[λodlm]] in line 16.

IV. PPTMC APPROACH

The PPTMC algorithm on cloud is described in this section.
In order to securely supply different high-quality clustering
services for Industrial IoT, the proposed method aims at imple-
menting the TMC algorithm by collaborating cloud computing
power without divulging any confidential information. Along
this goal, this work proposes a completely secure protocol,
implementing a privacy preserving equivalence for each step
of the original TMC algorithm proposed in [4].
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Algorithm 2 SAWR Protocol
Input: C1 has encrypted Kth-order transition tensors[[
λwT (1)

tr

]]
,
[[
λwT (2)

tr

]]
, . . . ,

[[
λwT (k)

tr

]]
, C2 has sk.

Output: Encrypted attribute weight ranking vectors
[[λww1]] , [[λww2]] , . . . , [[λwwk]] only to C1.

1: C1:
2: Set a probability 0 ≤ α < 1 and compute [[λwα]].
3: for l=1 to k do
4: Pick an initial vector w0 ∈ ℜm and ∥w0∥2 = 1,

compute [[λww0]].
5: Set a random vector u ∈ ℜm and ∥u∥2 = 1, compute

[[λwu]].
6: [[AR]]←

[[
λwT (l)

tr

]]
.

7: C1, C2:
8: for j=1 to c do
9: for i=1 to l-1 do

10: [[AR]]←
[[
AR×i(λwwj−1)

]]
.

11: [[AR]]← SD1([[AR]] , λw).
12: end for
13: for i=l+1 to k do
14: [[AR]]←

[[
AR×i(λwwj−1)

]]
.

15: [[AR]]← SD1([[AR]] , λw).
16: end for
17: [[λwwj ]]← [[AR]].
18: for t=1 to m do
19:

[[
λw

2(wj)t
]]
← SM([[λwα]] ,

[[
λw(wj)t

]]
).

20:
[[
λw

2(wj)t
]]
←[[

λw
2(wj)t

]]
∗ SM([[λw]] ∗ [[λwα]]

N−1
, [[λwut]]).

21:
[[
λw(wj)t

]]
← SD1(

[[
λw

2(wj)t
]]
, λw).

22: end for
23: end for
24: C1: Take the first Ifl elements of [[λwwj ]] as the

encrypted ranking vector [[λwwl]].
25: end for

Initially, the client sends the encrypted object tensors and
the feature space combination vectors to C1. Upon receiving,
C1 with private inputs ([[λoXi]], [[vj ]]), for 1 ≤ i ≤ n, 1 ≤
j ≤ b, and C2 with the private key sk are jointly involved in
the PPTMC protocol. The outputs are the encrypted multiple
clustering results [[clj ]], which are only known to C1, for 1 ≤
j ≤ b.

The main steps involved in the proposed PPTMC protocol
are discribed in Algorithm 4. In line 1, C1 locally computes the
encrypted association tensor [[λoTa]] by using homomorphic
addition on all encrypted object tensors.

From line 3 to 6, C1 with the help of C2 securely computes
the encrypted transition tensors

[[
λoT (l)

tr

]]
with the SD2

protocol, which are known only to C1, for 1 ≤ l ≤ k.
After that, by utilizing the SAWR protocol in line 7, C1

with the input
[[
λwT (l)

tr

]]
and C2 collaboratively compute the

encrypted attribute weight ranking vectors [[λwwl]], for 1 ≤
l ≤ k. The outputs of this step are known only to C1.

From line 8 to 11, by using the SM protocol in an iterative
manner, C1 with the input

[[
λwT (l)

tr

]]
and C2 federatively

Algorithm 3 SSWTD Protocol
Input: C1 has encrypted object tensors [[λoX ]] , [[λoY]],
metric matrix [[λeG]], weighted tensor [[λwTw]], C2 has sk.
Output: Encrypted selective weighted tensor distance
[[λodSWTD]] only to C1.

1: C1, C2:
2: for l=1 to If1 × If2 × · · · × Ifk do
3: for m=1 to If1 × If2 × · · · × Ifk do
4: [[λeλwdlm]]← SM([[λeglm]] , [[λwwl]]).
5: [[λedlm]]← SD1([[dlm]] , λw).
6: [[λo(xl − yl)]]← [[λoxl]] ∗ [[λoyl]]

N−1
.

7: [[λeλodlm]]← SM([[λedlm]] , [[λo(xl − yl)]]).
8: [[λodlm]]← SD1([[λeλodlm]] , λe).
9: [[λoλwdlm]]← SM([[λodlm]] , [[λwwm]]).

10: [[λodlm]]← SD1([[λoλwdlm]] , λw).
11: [[λo(xm − ym)]]← [[λoxm]] ∗ [[λoym]]

N−1
.

12:
[[
λo

2dlm
]]
← SM([[λodlm]] , [[λo(xm − ym)]]).

13: [[λodlm]]← SD1(
[[
λo

2dlm
]]
, λo).

14: end for
15: end for

16: C1: [[λodSWTD]]←
If1×If2×···×Ifk∏

l,m=1

[[λodlm]].

compute the encrypted weighted tensor based on Eq. (4)
over plaintexts in [4]. Same as the SAWR protocol, the SD1
protocol is utilized to avoid overflow after each multiplication.
The output is [[λwTw]], which is known only to C1.

Tw = w1 ◦ w2 ◦ · · · ◦ wk (4)

From line 13 to 20, by applying the homomorphic properties
and SE protocol, C1 with the help of C2 securely computes
the encrypted metric matrix [[λeGq]] based on Eqs. (2), (3),
for 1 ≤ q ≤ b. Moreover, the SD1 protocol is used to prevent
overflow after each multiplication.

From line 21 to 25, adopting the SSWTD protocol, C1 with
the encrypted input object tensors [[λoXj ]] , [[λoXh]], metric
matrix [[λeGq]] and weighted tensor [[λwTw]], and C2 jointly
compute the encrypted SWTD

[[
λo(SV

(q))j,h

]]
, for 1 ≤ j ≤

n, j + 1 ≤ h ≤ n, 1 ≤ q ≤ b.
In line 27, C1 locally builds the encrypted multiview tensor

[[Tmv]] by stacking the encrypted view matrices
[[
S
(1)
V

]]
,[[

S
(2)
V

]]
, . . . ,

[[
S
(b)
V

]]
.

In line 28, by using the encrypted multiview tensor as
the input of the SCFS that is a part of the SHOCFS pro-
tocol, C1 and C2 cooperatively compute multiple clusterings
[[cl1]] , [[cl2]] , . . . , [[clb]], which are only known to C1.

In the end, by adding a random number r to the
final encrypted clustering results [[cl1]] , [[cl2]] , . . . ,[[clb]],
C1 locally generates the perturbed ciphertext results
[[cl1 + r]] , [[cl2 + r]] , . . . , [[clb + r]], then sends them to C2

and r to the client, respectively. C2 with the private
key sk decrypts the perturbed ciphertext results to get
cl1 + r, cl2 + r, . . . , clb + r and then sends them to the client.
As C2 only sees the perturbed results rather than the final
plaintext results, no privacy information is exposed to C2.
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Upon receiving, the client computes the plaintext multiple
clustering results cl1, cl2, . . . , clb by reducing r, which can
provide different clustering services for Industrial IoT, such
as device classification, material recognition, electricity pre-
diction, etc.

V. EVALUATION AND EXPERIMENTS
In this section, the performance of PPTMC is evaluated.

First of all, the security analysis of PPTMC is proved. Then,
the complexity of PPTMC is theoretical evaluated about its
computation and communication costs. Next, the datasets
and evaluation metrics are introduced. In the end, simulated
experimental results as well as corresponding analyses are
provided. All experiments were implemented on a simulated
cloud platform being consisted of the laboratory computers
with Simgrid tool, and each PC is with 3.20GHz Intel Core
i5 3470 CPU (four cores) and 16-GB RAM.

A. Security Analysis
This section provides a proof of security assurance of

PPTMC under the semi-honest model. Note that users are
not involved in any computation of PPTMC after outsourcing
encrypted object tensors to the cloud. The parties here refer to
the cloud C1 and C2, who follow the protocol correctly, but try
to get as much extra information as they can. Due to the formal
Paillier cryptosystem guarantee, C1 only obtains the cipher-
texts of intermediate results and final results. Meanwhile, since
C2 has the private key sk, the protocol allows it to decrypt
intermediate results, but it only gets the completely perturbed
plaintexts. Besides, in each step computation, the proposed
protocols utilize homomorphic properties or some basic sub-
protocols of which the security have been given the formal
proofs, including SM, SC, SD1, etc., the proposed PPTMC
method is completely secure according to the composition
theorem [8]. Therefore, during the execution of the whole
protocol, no user data is leaked to C1 and C2.

B. Complexity Analysis
This section contains theoretical analyses about the com-

putation cost as well as communication cost in regard to the
proposed method. Suppose an object tensor has m elements,
including m0 zero elements and m1 nonzero elements, and
there are n object tensors in a dataset.

Computation Cost: To release the burden of the client, in
the proposed PPTMC method, it is required that the client
encrypts all object tensor prior to outscouring them to C1,
then all computations of multiple clusterings do not need user
participation any more. Hence, the computation cost about the
client is determined by the encryption time of a single element
and the total number of nonzero elements of all object tensors.
Therefore, the client’s computational complexity is O(m1n).

Upon the PPTMC protocol, the cloud’s computation cost Tc

contains the cost of secure computing transition tensor Tctr ,
the cost of secure constructing weight tensor Tcsawr , the cost
of computing SSWTD matrix Tcsswtd

and the cost of SCFS
Tcscfs

, which is defined as the equation:

Tc = Tctr + Tcsawr + Tcsswtd
+ Tcscfs

. (5)

Algorithm 4 PPTMC Clustering Protocol
Input: C1 has the encrypted object tensors [[λoX1]] ,
[[λoX2]] , . . . , [[λoXn]] and the feature space combination
vectors [[v1]] , [[v2]] , . . . , [[vb]], C2 has sk.
Output: Encrypted multiple clusterings [[cl1]] , [[cl2]] , . . . ,
[[clb]] only to C1.

1: C1:
Compute the association tensor [[λoTa]] with elements[[
λot

a
i1i2...ik

]]
=

n∏
d=1

[[
λot

ob(d)
i1i2...ik

]]
.

2: C1, C2:
3: Set z = max{If1 , If2 , . . . , Ifk}.
4: for l=1 to k do
5: Compute the transition tensor

[[
λoT (l)

tr

]]
with elements[[

λwt
tr(l)
i1...il...ik

]]
←

SD2(
[[
λot

a
i1...il...ik

]]λw
,

z∏
il=1

[[
λot

a
i1...il...ik

]]
).

6: end for
7: [[λww1]] , [[λww2]] , . . . , [[λwwk]]←

SAWR(
[[
λwT (1)

tr

]]
,
[[
λwT (2)

tr

]]
, . . . ,

[[
λwT (k)

tr

]]
).

8: Initialize the weighted tensor [[λwTw]] with elements[[
λwt

w
i1i2...ik

]]
← [[λw]].

9: for l=1 to k do
10: Update the weighted tensor [[λwTw]] with elements[[

λ2
wt

w
i1...il...ik

]]
← SM(

[[
λwt

w
i1...il...ik

]]
,
[[
λw(wl)il

]]
).[[

λwt
w
i1...il...ik

]]
← SD1(

[[
λ2
wt

w
i1...il...ik

]]
, λw).

11: end for
12: for q=1 to b do
13: for l=1 to If1 × If2 × · · · × Ifk do
14: for m=1 to If1 × If2 × · · · × Ifk do

15:
[[
∥pl − pm∥22

]]
←

k∏
t=1

[[
(vq)t

]](it−i
′
t)

2

.

16:
[[

λd∥pl−pm∥2
2

2σ2

]]
←

SD1(
[[
∥pl − pm∥22

]]λdλσ

, λσ2σ
2).

17:
[[
λσλe(gq)lm

]]
← SE(

[[
λd∥pl−pm∥2

2

2σ2

]]N−1

)
λσ

2πσ2 .

18:
[[
λe(gq)lm

]]
← SD1(

[[
λσλe(gq)lm

]]
, λσ).

19: end for
20: end for
21: for j=1 to n do
22: for h=j+1 to n do
23:

[[
λo(SV

(q))j,h

]]
←

SSWTD([[λoXj ]] , [[λoXh]] , [[λeGq]] , [[λwTw]]).
24: end for
25: end for
26: end for
27: Build the encrypted multiview tensor [[Tmv]] with

[[
S
(1)
V

]]
,[[

S
(2)
V

]]
, . . . ,

[[
S
(b)
V

]]
.

28: Generate multiple clusterings [[cl1]] , [[cl2]] , . . . , [[clb]] by
using SCFS to [[Tmv]] in parallel.

The computation of the transition tensor is based on an
association tensor where all the original tensors accumulate
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together, time complexity Tctr is O(m0n+m1n), because it
has to add up every object tensor, and carry out a division
on every nonzero element. The time complexity of secure
constructing of weight tensor Tcsawr is O(m), because every
element of the transition tensor is involved in a series of
secure multiplications, but the number of times of the secure
multiplications is a constant. The cost of computing SSWTD
matrix Tcsswtd

is O((m2 − m2
0)n

2), because for one single
distance, it has to carry out four secure multiplications and
two homomorphic subtractions for every glm, and the number
of glm is m2, where the number of distances is n(n− 1)/2.
However, the reason of Tcsswtd

not being O(m2n2) is that zero
elements are not encrypted, and if one subtraction is about two
zeros, the corresponding computations can be omitted. So the
cost of computing SSWTD matrix Tcsswtd

is O((m2−m2
0)n

2).
The time complexity of SCFS algorithm Tcscfs

is proved to
be O(n2) in [14]. In summary, the total time complexity Tc

is O((m2 −m2
0)n

2).
Communication Cost: Given the Paillier encryption key

size s, the client uploads (nm1 + bk)s messages to C1 prior
to carrying out the PPTMC on the cloud. After the whole
algorithm is executed, the client downloads (bn+1)s messages
from the clouds, including the perturbed multiple clustering
results from C2 and the random number from C1.

C. Datasets and Evaluation Metrics

In experiments and simulations of this section, the proposed
method is applied to two real-world datasets. The first dataset
is about the smart grid [14], including electricity consumption
of more than one thousand enterprises in Yangzhong High-
tech Development Zone, Jiangsu, China in 2015, economy
data and meteorology data. In the grid dataset, each object
tensor has four dimensions: date, the PPI (producer price
index, an economic index number), weather (cloudy, sunny,
overcast, rain, snow) and average temperature of that day. A
company corresponds to an object tensor. The element in an
object tensor is the electricity consumption of the company
on its coordinate (date, weather, temperature and PPI). So
the size of each object tensor is 24× 24× 5× 11, corre-
sponding to twenty-four different dates, twenty-four different
temperatures, five different weathers and eleven different PPI
numbers, respectively. The second dataset is from a smart
bike maintenance system in New York City [16]. In the
dataset used in this experiment, there are 473620 bike-sharing
records, as well as following information: start time, stop
time, origin station, destination station, and so on. In the
bike dataset, each object tensor has 7× 4× 28× 14 elements,
and the dimensions separately corresponding transition pattern,
weather, temperature, and wind speed. A record corresponds
to an object tensor. Comparing to the second dataset, the
object tensors of the grid dataset have larger dimensions, more
nonzero elements and usually larger elements.

In the evaluation of accuracy, two widely used metrics, E∗
and RI [17], are applied to evaluate the clustering accuracy of
the PPTMC algorithm.

E∗ is utilized to measure the quality of clustering centers,
which computes the distance of the produced clustering centers

by one algorithm and the actual ones, and is calculated as

E∗ =

√∑c

i=1

∥∥viideal − vi∗
∥∥2, (6)

where, viideal denotes the ith actual cluster center and vi∗
represents the ith cluster center generated by the specific
algorithm *. The lower the E∗ value, the more accurate the
generated clustering centers.

Rand Index (RI) is utilized to evaluate the quality of
clustering result by mearsuring whether the result produced by
an clustering algorithm is consistent with the true clustering
result, which is defined as

RI =
TP + TN

TP + FP + TN + FN
, (7)

where TP represents two similar objects are parted into one
cluster correctly; TN indicates two dissimilar objects are
grouped into two clusters correctly; FP denotes two dissimilar
objects are parted into one cluster incorrectly; FN implies two
similar objects are grouped into two clusters incorrectly. The
higher the RI value, the more accurate the produced clustering
result.

D. Encryption Time
In the proposed scheme, the client needs to encrypt the

data with the Paillier cryptosystem before outsourcing them
to cloud for clustering. The encryption is carried out on the
client, so it is essential to evaluate the burden on the client
during the encryption. For assessing the impact of dataset size
on encryption time, 40, 80, 120, 160 and 200 objects are
encrypted on client in the two datasets, respectively. Fig. 1
(a) shows the encryption time, which changes from 1.486s to
6.764s (grid dataset) and from 0.618s to 3.415s (bike dataset),
respectively, linearly increasing with the number of objects.
In addition, the encryption time of bike dataset is always
less than that of grid dataset, indicating the different sizes
of dimensions, sparseness as well as the values of elements
have an important impact on encryption time.

However, the encryption operation can be pre-performed
offline, and it only needs to be performed once during the
entire method. In addition, after downloading cluster results
from the cloud, the client does not perform decryption opera-
tions in the proposed scheme, instead, it only needs to remove
perturbation from the plaintext results, the time of which can
be ignored. Moreover, Fig. 1 (b) shows a set of encryption
time of the grid dataset using the BGV encryption scheme for
comparison, and the encryption time for the client of PPTMC
is between 1/40 and 1/30 of BGV. The BGV technique is used
in a similar privacy preserving higher-order CFS method [17].
In summary, the proposed method is very lightweight for the
client.

E. Execution Time
In this section, speedup in latency is used as the speedup

ratio, which is defined as the quotient of the execution time
in parallel and the execution time in serial, and the ratio of
the PPTMC in cloud platform is simulated to evaluate its
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Fig. 1. Encryption time of two datasets and two encryption schemes.
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Fig. 2. Speedup ratio on the two datasets.

scalability and efficiency. The execution time in serial is from
experiments using just one node on both C1 and C2, while
the execution time in parallel is from experiments using many
nodes on both clouds. The simulations are operated on the
grid dataset and bike dataset, with different number of objects
and nodes, respectively. And the simulation results are shown
in Fig. 2.

In Fig. 2 (a), the speedup ratio keeps increasing slowly from
70.85 to 75.19 for 40, 80, 120, 160 and 200 objects with 100
nodes, indicating the PPTMC method is very scalable to be
carried out in parallel. Fig. 2 (b) shows how the speedup ratio
changes for 40 objects. As the number of nodes increased
from 20 to 100, the speedup ratio increases almost linearly
from 18.93 to 70.85 and 18.79 to 69.56 with grid dataset and
bike dataset, respectively. Such result reveals that PPTMC has
high scalability for Industrial IoT big data when employing
more nodes on cloud. Besides, experiments with the bigger
size of dataset usually generate higher speedup ratios, but the
differences are not significant.

F. Clustering Accuracy

The clustering accuracy of PPTMC is measured in regard
to E∗ and RI in this section. Specially, considering that the
proposed scheme aims at implementing completely priva-
cy preserving TMC algorithm, the results of original TMC
algorithm is used as a benchmark for clustering accuracy.
Meanwhile, to evaluate robustness of the proposed approach
and how magnification factor influence the accuracy of the
method, PPTMC was performed with different magnification
factors on the two datasets with 200 objects and the results
are shown in Table III.

From the experimental results, the E∗ and RI are gradually
close to 0 and 1, respectively, when the magnification factor
increases below 105. That means the results are almost con-
sistence with the plaintext algorithm, but there are some little
errors. In fact, these errors are mainly FN errors. After the
magnification factor reaches 105, the values of E∗ and RI are

TABLE III
TABLE OF THE EVALUATION OF CLUSTERING ACCURACY

Dataset Evaluation criteria 103 104 105 106 107

Grid E∗ 0.027 0.01 0 0 0
RI 0.901 0.988 1 1 1

Bike E∗ 0.031 0.015 0 0 0
RI 0.915 0.976 1 1 1

both 0 and 1, respectively. Such result demonstrates that the
clustering results of PPTMC are accorded with the original
TMC algorithm completely, which is ensured by the formal
Paillier cryptosystem and magnification factor for floating
point precision. Consequently, the PPTMC can achieve perfect
performances about clustering accuracy and robustness.

VI. RELATED WORK

In recent years, some privacy preserving approaches for
clustering algorithms have been developed, including two
kinds of technologies in popular: randomization method and
encryption method. The former uses the data distortion tech-
nique to meet privacy preserving for clustering analysis [18,
19]. The latter was proposed by using cryptographic method
for privacy preserving clustering [20]. Because the encryption
method not only can provide formal guarantees of privacy, but
also is superior to randomization method as far as accuracy.
This work focuses on the encryption method.

There are mainly two scenarios of privacy preserving clus-
tering using encryption technology, one is the distributed
clustering based on secure multiparty computation (SMC),
another is the outsourced clustering based on cloud computing.
In distributed clustering, each party carries out calculation
tasks separately on its own data and shares part of its data
to cluster, containing two popular homomorphic schemes:
homomorphic public-key cryptosystems and secret additive
sharing schemes [21]. [22, 23] utilize the Paillier cryptosystem
to realize secure k-means clustering on distributed dataset,
while [24] shows an additive secret sharing scheme requiring
non-colluding parities for k-means clustering. However, since
k-means algorithm has the iterative nature, the above proto-
cols do not achieve a complete preservation of privacy. For
outsourced clustering, the data owner outsources all its data to
cloud for clustering calculation, while its cost is expected to be
reduced to minimum by using the cloud to carry out as much
as the calculations. Liu et al. [25] present an outsourced k-
means clustering method using homomorphic encryption, but
it requires the client to participate in comparing encrypted
distances. Zhang et al. [17] proposed PPHOCFS extended on
the traditional CFS algorithm by utilizing the BGV encryption
scheme, but due to some limitations of operations, such as
division and comparison, it only implements the distance
calculation on ciphertexts, while CFS is still executed on
plaintexts.

The proposed PPTMC method is the first to achieve the
privacy preserving multiple clustering algorithm, and there
are two main differences in contrast to the above schemes.
First, PPTMC can realize a completely private protocol over
encrypted data under the semi-honest model using the secure



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2871174, IEEE
Transactions on Industrial Informatics

two-party computing, while the protected information contains
intermediate results, distances, clustering centers, objects in
each cluster, number of clusters, as well as number of objects
in each cluster. Moreover, current schemes focus on designing
privacy preserving methods on un-encrypted data with mul-
tiple colluding or non-colluding parties in data sharing, or
over encrypted data requiring user’s involvement in outsourced
calculations. Different from them, the aim of PPTMC is to
provide the privacy preserving multiple clustering algorithm
over encrypted data, to improve it’s efficiency by cooperating
the power of clouding computing, as well as to make the client
lightweight as much as possible.

VII. CONCLUSION

Aiming at securely and efficiently providing different clus-
tering services according to different applications in Industrial
IoT, this paper proposes a PPTMC method as well as the relat-
ed SE, SAWR and SSWTD protocols. In the proposed scheme,
all computational tasks are implemented on cloud whereas
any confidential information is not exposed or inferred, not
only enhancing efficiency, but also preserving users’ privacy.
The method adopts the Paillier cryptosystem on hybrid cloud
model to carry out PPTMC in private. Finally, the work
theoretically analyzes PPTMC with respect to security, com-
putation and communication cost, implements and evaluates it
on two real-world datasets.

Evaluation and experimental results show that: (1) PPTMC
provides a complete privacy preserving protocol over en-
crypted data through the security analysis; (2) by using the
formal homomorphic cryptosystem and controlling the floating
point precision, PPTMC can achieve 100% clustering accuracy
compared with plaintext TMC method; (3) without getting
involved in any multiple clustering calculations, the client
only needs to perform fast encryption that its encryption time
is between 1/40 and 1/30 of BGV, and remove perturbation
with the returned clustering results from cloud, which is very
lightweight for users; (4) with the number of nodes increasing
from 20 to 100, the speedup ratio increases almost linearly
from 18.93 to 70.85 and 18.79 to 69.56 with grid dataset and
bike dataset, respectively, which indicates PPTMC has high
scalability when using more cloud servers, and this is very
important for the analysis of Industrial IoT big data.

Future work focuses on improving the efficiency of the
PPTMC by seeking more efficient methods, and estimating it
on more real Industrial IoT applications, as well as studying
the incremental PPTMC method for streaming data.
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