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Neural-Network-Based Root Mean Delay
Spread Model for Ubiquitous Indoor

Internet-of-Things Scenarios
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Abstract—Massive robust communication demands among
machines and humans are required in ubiquitous Internet-of-
Things (IoT) applications. To design the appropriate commu-
nication system, the knowledge of the propagation character-
istics for various IoTs scenarios is necessary. In this article,
a measurement-based neural-network-based root-mean-square
(RMS) delay spread model for ubiquitous indoor IoTs scenarios
is presented. The proposed model is a two-layer feedforward neu-
ral network plus a random variable, characterizing the average
RMS delay spread and uncertain shadowing effect, respec-
tively. The neural network consists of five inputs, including
transmitting/receiving antennas (Tx/Rx) separation, frequency,
antenna height, environment, and line-of-sight/non-line-of-sight
(LOS/NLOS) propagation condition, seven hidden layer neurons,
and one output layer neuron. Compared with different config-
urations of the neural network, the hyperbolic tangent sigmoid
functions and the Levenberg–Marquardt backpropagation algo-
rithm are selected as neurons’ activation functions and training
method, respectively. Additionally, the random variable is found
to follow the normal distribution using the maximum-likelihood
estimation. Finally, the novel model is experimentally validated to
be accurate, general, and extensible compared with the conven-
tional normally distributed RMS delay spread model. This model
is well applicable to the design and planning of the ubiquitous
communication links for future IoTs scenarios.

Index Terms—Internet of Things (IoT), neural network, root
mean-square (RMS) delay spread, shadowing.

I. INTRODUCTION

THE APPLICATION of the Internet of Things (IoT) is
considered to be a significant feature in current and future

wireless communication systems [1], [2]. With the emergence
of ubiquitous IoTs scenarios, i.e., smart home, smart building,
smart grid, smart transportation, etc., massive smart devices
and sensors are distributed in the environments [3]–[5]. A
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large amount of communication links among these machines
and users should be established [6]. Actually, communication
links must meet the requirements of stability, throughput, and
latency in IoTs applications [7], [8]. In order to ensure such
communication requirements, the comprehensive knowledge
of the characteristics of the indoor environments is impor-
tant for the design of the communication systems and the
deployment of the smart devices and sensors [9], [10].

The root-mean-square (RMS) delay spread characterizes the
severity of the multipath fading and time dispersion [11], [12].
It is a crucial metric of the propagation properties, directly
affecting the design of the multiplexing methods, the digi-
tal modulations, and the signal waveforms [13]. Although the
communication distance in indoor environments is small com-
pared with the one of outdoor environments, the multipath
fading for indoor communication is still serious since the
various scenarios, rich scatters, and complex structures, espe-
cially at the low-frequency band. Thus, the modeling of
the RMS delay spread property in indoor environments is
a problem needed to be solved. Recently, the RMS delay
spreads of indoor environments have been extensively inves-
tigated [14]–[17]. For example, its statistical properties and
distributions in different indoor environments, propagation
conditions, and frequencies have been summarized in [18].
In [19], the RMS delay spread has been found to follow normal
distributions and its dependency on the distance and path loss
has been studied. The antenna height and polarization effects
on RMS delay spread have been studied in [20] and [21].
More recently, a lognormally distributed RMS delay spread
model of the massive MIMO channel at 11 GHz has been
proposed [22]. However, these works share three commonali-
ties: 1) the existing models are proposed based on measured
data over a large distance range; 2) the quantitative relation-
ships among the RMS delay spread and some important inputs
are seldom researched; and 3) the generality and extendibility
of these models are not fully considered. Actually, an alter-
native solution to satisfy the communication requirements in
IoTs scenarios is to offload part of the communication and
computing tasks to the edge of the networks [23], [24]. In
this case, many IoTs scenarios may happen in complex indoor
environments with scattered and deep multipath fading prop-
agation characteristics, e.g., rooms, offices, stairs, corridors,
etc. The indoor short-range communication will become the
main type of communication among the machines and the
users [25], [26]. Additionally, the environments, frequencies,

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Exeter. Downloaded on June 15,2020 at 22:05:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8067-5056
https://orcid.org/0000-0001-9208-8334
https://orcid.org/0000-0002-1032-4434


YU et al.: NEURAL NETWORK-BASED ROOT MEAN DELAY SPREAD MODEL FOR UBIQUITOUS INDOOR INTERNET OF THINGS SCENARIOS 5581

users’ postures, sensors’ positions/heights, smart devices’ sta-
tuses, and other factors may be different in various IoTs
applications [27]–[29]. To quantitatively describe these effects,
more inputs need to be considered. Therefore, the correction
terms should be introduced into the existing models such as
the normal random variable RMS delay spread model [18].
However, the expressions of the correction terms are unknown
and should be experimentally modeled or theoretically proved.
Thus, the effectiveness and generality of the existing models
will be limited when employed to the ubiquitous indoor IoTs
scenarios.

Therefore, extensive channel measurements should be con-
ducted in typical indoor environments of office buildings, i.e.,
office, corridor, and stair. They correspond to different sce-
narios for IoTs applications, such as smart office [27], fire
alarm/rescue [30], intelligent monitoring [31], etc. In addi-
tion, the neural network cloud be adopted to improve the
generality and expansibility of the model. As a branch of
machine learning, the neural network shows high accuracy
and good generality in solving the fitting problem. It has
been applied to several areas of electromagnetic, antenna,
and propagation [32]–[34]. The recent works about the neu-
ral network-based propagation models are summarized in the
Table I [35]–[43]. The path losses for line-of-sight (LOS) and
non-line-of-sight (NLOS) conditions have been modeled by
a single and hybrid neural networks, respectively, [35]. The
UWB channel path loss can be well represented by a neu-
ral network based on multilayer perceptron [36]. In [37], a
heuristic model has been proposed by combining the neu-
ral network prediction approach with the multiple regression
to describe the path loss in different residence environments.
The neural network-based path loss model has been found
to be more precise than the Hata model based on exten-
sive outdoor measurements [38]. The relationship between
the frequency and channel frequency response has been
modeled using feedforward and radial basis function neural
networks [39]. The performances of three dynamic neural
networks, namely, focused time-delay neural network, dis-
tributed time-delay neural network, and layer recurrent neural
network when they are applied to describe the path loss
have been evaluated in [40]. Both of the artificial neural
network and other machine learning methods, i.e., adaptive
neural fuzzy inference system [41] and random forests [42],
have been used for modeling the path loss. The effects
of input parameters, the number of hidden neurons, acti-
vation functions, and learning algorithms on the accuracy
of the neural network-based path loss model have been
investigated [43].

Nevertheless, it is hard to directly apply these models
to predict the RMS delay spread in IoTs scenarios for
the following reasons: 1) most of the works focus on the
prediction of the path loss rather than the RMS delay
spread [35]–[38], [40]–[43]; 2) the shadowing effects describ-
ing the uncertainty of the RMS delay spread are rarely
investigated; 3) the influences of the frequency, antenna height,
environment, and propagation condition which are important
for indoor channels are not considered [37], [43]; and 4) most
of the channel sounding campaigns are carried out in the
outdoor environments [35], [38], [40]–[43].

The RMS delay spread can provide useful information
for the communication system design, such as the cyclic
prefix length in the orthogonal frequency-division multiplexing
(OFDM) system, the channel equalizer, the RAKE receiver,
etc. [9], [12]. Especially, in various IoTs scenarios, the system
designers need an accurate RMS delay spread model with
diverse inputs to conveniently and fast determine the channel
conditions. Motivated by the above challenges and the ubiq-
uitous communication demands for IoTs scenarios, a novel
measurement-based short-range RMS delay spread model with
robustness, generality, and expansibility is essentially neces-
sary and desirable [44]. Thus, measurement campaigns in three
typical indoor environments, i.e., office, corridor, and stair
are carried out at first. Then, a neural network-based RMS
delay spread model is experimentally proposed. The main
contributions of this article can be summarized as follows.

1) A novel RMS delay spread model combining the arti-
ficial neural network and random variable is proposed:
The proposed model is a neural network plus a random
variable, describing the certain and uncertain parts of
the RMS delay spread, respectively. The advantages of
the proposed model under this framework are accurate,
general, and extensible.

2) More important inputs are included in the RMS delay
spread model: Thanks to the neural network in the
above model, the inputs related to the IoTs scenarios,
including transmitting/receiving antennas (Tx/Rx) sep-
aration, frequencies, antenna height, environments, and
LOS/NLOS propagation conditions, are introduced into
the proposed model.

3) The shadowing effect of the RMS delay spread is
researched for the first time: In the proposed model,
the normal random variable is used for characterizing
the uncertain shadowing effects of RMS delay spread.
It can describe the phenomenon that the measured RMS
delay spreads scatter around the fitted curves.

4) The impacts of different configurations of the neural
network on the model accuracy are investigated: The
effects of the key configurations of the neural networks,
i.e., the activation functions of the neurons in the hid-
den layer and output layer, the training method, and
weight/bias learning functions, on the accuracy of the
model are studied. The best configuration is selected for
extracting the parameters of the proposed model.

The remainder of this article is organized as follows.
First, the experimental environments, measurement procedure,
measurement system, and data extraction are performed in
Section II. In Section III, the framework of the proposed
neural network-based model is elaborately discussed. The
effects of different configurations of the neural network on
the model accuracy are investigated. Moreover, the validity
of the proposed model is experimentally verified. Finally, in
Section IV, the conclusion is drawn.

II. MEASUREMENT SETTINGS

A. Experimental Environment and Measurement Procedure

The data used for modeling and validation are measured
in three typical indoor environments (i.e., office, corridor,
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Fig. 1. Photographs of measured environments: (a) office, (b) corridor, and (c) stair.

TABLE I
RECENT WORKS ABOUT PROPAGATION MODELING

BASED ON NEURAL NETWORKS

and stair). The plan view of the measured environments
and the deployment of the measured points are described
elaborately in [45]. Fig. 1 shows the photographs of these
environments. The detailed information about the measured
environments, center frequencies, and data sets for channel
modeling is tabulated in Table II. The size of the office is
about 10.8 m × 7.5 m × 3.5 m (length × width × height).
It consists of concrete walls, wooden doors, gypsum ceilings,
and tiled floors. There are some desks, computers, electronic
equipments, cabinet, and glass window in the office. The sizes
of the T-shaped corridor and the indoor enclosed stair are
about 15 m × 3.6 m × 3.8 m and 6.9 m × 3.5 m × 5.2 m,
respectively. The materials of their walls, doors, ceilings,
and floors are concrete, wooden, gypsum, and tiled, respec-
tively. Additionally, there is a metal elevator in the corridor
environment and wooden armrests in the stair environment.

TABLE II
INFORMATION ABOUT MEASURED DATA USED FOR MODELING

The heights of the Tx antenna are 2.0 m, meanwhile,
the heights of Rx change from 1 to 1.9 m with an
interval of 0.1 m. At each Rx point, measurement grid
points are employed. Moreover, ten frequency responses are
recorded at each grid point for noise reduction [45]. With
the variation of the Rx height and the location, both of
the LOS and NLOS conditions are measured. During the
measurements, the surroundings of the measured environ-
ment are frozen, therefore, the channel can be regarded as
quasistatic.

It is worth noting that the collected data sets (S1–S5) in
Table II are used for channel modeling and parameters extract-
ing in Sections III-A and III-B. Additional measurements are
carried out in the other two offices, corridor and stair envi-
ronments with similar structures but different sizes, furniture,
and equipment deployments. These data are used for model
validation in Section III-C.
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Fig. 2. Proposed neural-network-based RMS delay spread model.

TABLE III
CONFIGURATIONS OF MEASUREMENT SYSTEM

B. Measurement System and Data Extraction

The measurement system is a typical vector network ana-
lyzer (VNA)-based channel sounder. The detailed illustration
of the measurement system can be found in [45]. Its config-
urations are listed in Table III. Herein, a brief description of
the measurement system is given. The VNA sweeps within the
measured frequency band (i.e., 2.5–2.69 GHz/4.3–7.3 GHz/6–
8.5 GHz) with 10-dBm transmitting power. The Tx and Rx are
connected to the port1 and port2 of the VNA, respectively.
Then, the S21 parameters, corresponding to the frequency
response, are captured using this system. The RMS delay
spread of the channel can be extracted by the channel impulse
responses. The method for extracting the channel parameter is
discussed elaborately in [45]. In this article, the RMS delay
spread is denoted by τrms(d, f , h, c, e), where d is the Tx/Rx

separation, f denotes the measured center frequency, h indi-
cates the Rx height, c represents the LOS or NLOS condition,
and e means the different indoor environments. The values of
c can be 1/0, denoting LOS and NLOS conditions and the
values of e can be 1/2/3, denoting office, corridor, and stair
environments, respectively.

III. NEURAL-NETWORK-BASED RMS
DELAY SPREAD MODEL

A. Proposed Model

Theoretically, the RMS delay spread can be divided into
two parts [46]. One is the average RMS delay spread, usu-
ally described by a determined expression with inputs. The
other is the uncertain RMS delay spread, characterized by
a random variable. Herein, the two-layer feedforward neural
network is used for modeling the determined expression. It has
been proved to have high accuracy and good generality when
applied to the propagation model [32]–[34]. Meanwhile, the
distribution of the random variable is determined to follow
normal distribution under the maximum-likelihood estimation
(MLE) criterion. Thus, in this article, the RMS delay spread
is modeled as a two-layer feedforward neural network plus a
normally distributed random variable as illustrated in Fig. 2.
As shown in Fig. 2, the black circles in the hidden and output
layers are called neurons. They have some computational abil-
ities, such as calculating summation and activation function.
Their structures are given in the dashed box of Fig. 2. The
activation functions of the hidden and output layers’ neurons
the are hyperbolic tangent sigmoid (HTS) function as shown in

fa(x) = 1 − e−2x

1 + e−2x
. (1)

The reason for using such functions will be explained in
Section III-B. It is seen that there are five inputs, including
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the Tx/Rx separation d, frequency f , Rx height h, environment
e, and LOS/NLOS condition c. First, the inputs are normalized
by their maximum measured values (dm, fm, hm, cm, and em).
The normalized inputs (d/dm, f /fm, h/hm, e/em, and c/cm)
transmit through the two-layer neural network, and the output
(Oτ ) can be calculated by

Oτ = fa

⎧
⎨

⎩

N∑

j=1

w0j

[

fa

(

wj1
d

dm
+ wj2

f

fm
+ wj3

h

hm

+ wj4
c

cm
+ wj5

e

em
+ bj

)]

+ b0

⎫
⎬

⎭
.

(2)

Then, the average RMS delay spread can be obtained by
multiplying the output with the maximum measured RMS
delay spread (τm), that is Oτ τm. Subsequently, a random vari-
able (Nτ ) with normal distribution is added to the average
RMS delay spread (Oτ τm). Finally, the RMS delay spread
(τrms(d, f , h, c, e)) can be obtained as

τrms(d, f , h, c, e)

= fa

⎧
⎨

⎩

N∑

j=1

w0j

[

fa

(

wj1
d

dm
+ wj2

f

fm
+ wj3

h

hm
+ wj4

c

cm

+ wj5
e

em
+ bj

)]

+ b0

⎫
⎬

⎭
τm + Nτ . (3)

It is noteworthy that d, f , h, c, e, and τrms are all pos-
itive values, thus, the normalization values locate in the
interval of [0, 1].

In (2) and (3), N is the number of neurons in the hidden
layer, fa(·) is the activation function of the neuron, b0 is the
bias of the neuron in the output layer, w0j (j = 1, 2, . . . , N)
is the synaptic weight from the jth hidden layer neuron to the
output layer neuron, bj (j = 1, 2, . . . , N) is the bias of the
neuron in the hidden layer, wji (j = 1, 2, . . . , N, i = 1, 2, 3, 4)
is the synaptic weight from the ith input to the jth hidden
layer neuron, the order of the inputs is (d, f , h, c, e), Nτ is
the shadowing of the RMS delay spread with mean μN and
standard deviation σN , and dm, hm, fm, em, cm, and τm are the
maximum measured Tx/Rx separation, frequency, Rx antenna
height, environment (em = 3), propagation condition (cm = 1),
and RMS delay spread, respectively.

In general, by substituting fa(·) in (3) with (1), the proposed
RMS delay spread model can be descried by (4), shown at the
bottom of the page.

Fig. 3. Number of the neurons versus the MSE.

B. Model Parameters Extraction

It is clearly seen from (4) that the parameters of the
proposed models are N, w0j, b0, wji, bj, μN , σN , dm, fm, hm, cm,
em, and τm (i = 1, 2, . . . , 5, j = 1, 2, . . . , N). In addition, the
key configurations of the feedforward neural network, includ-
ing the types of the activation functions in the hidden layer and
the output layer, the training methods and weight/bias learn-
ing functions, are important for the performance of the model.
In this section, these model parameters and neural network
configurations should be determined.

First, the number of the neurons in the hidden layer
should be extracted. By changing the size of the hidden layer
(N = 1, 2, . . . , 50), the mean-square errors (MSEs) between
the measured data and the fitted data are calculated. The num-
ber of the neurons versus the RMS delay spread is plotted
in Fig. 3. As an inspect of Fig. 3, the variation of the MSE
becomes small when the number of the neurons is larger than
7. Meanwhile, the computational complexity of the neural
network will increase with the number of neurons. Therefore,
given the efficiency of the proposed model, N is determined
to be 7.

Then, the synaptic weights and the biases of the neural
network are trained using the measured data. Usually, in feed-
forward neural network, the activation functions can be HTS,
log sigmoid (LS), and linear (LN) functions, the training
method can be Levenberg–Marquardt (LM), scaled conjugate
gradient (SCG), gradient descent with momentum and adap-
tive learning rate (GDX), resilient (RP), and one-step secant
(OSS) backpropagation algorithms, and the weight/bias learn-
ing function can be gradient descent (GD) and Widrow–Hoff
(WH) [43]. The combinations of these configurations (totally
3 × 3 × 5 × 2 = 90 combinations) are tested, and the MSEs of

τrms(d, f , h, c, e) = Nτ + τm
1 − e

−2

⎡
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(4)
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TABLE IV
MSES OF DIFFERENT CONFIGURATIONS OF THE NEURAL NETWORK

the outputs are compared. A part of them is listed in Table IV.
It can be observed that the MSEs of the first line in Table IV
are the smallest. That means the combination of the HTS
activation functions and the LM backpropagation algorithm
works best. In addition, the weight/bias learning function has
no impact on the results. Then, such a configuration (first line
of Table IV) is used for extracting the model parameters, i.e.,
w0j, b0, wji, and bj. The MATLAB Neural Network Toolbox
is used for training the measured data and generating the sim-
ulated data [47]. It is notable that before training the neural
network, all the input and output data are normalized using
their maximum values for the purpose of the accuracy of the
training process. Parameters dm, fm, hm, cm, em, and τm are
the maximum values of the corresponding input and output of
the measured data.

In addition, the shadowing is calculated by subtracting the
measured data with the predicted ones (using the same input
data) as discussed in [48]. Herein, the concept of the shad-
owing of the RMS delay spread can be referred to the one
of path loss. Then, parameters μN and σN can be extracted
by the MLE method. The probability plots of the shadowing
and the normal fit are shown in Fig. 4. It can be seen that the
normal random variable matches the shadowing of the RMS
delay spread well. The weights and biases of the trained neural
network and the other parameters are summarized in Table V.

C. Model Validation

In this part, the RMS delay spread model used for compari-
son (called reference model) is the normal distribution random
variable model. The proposed model and the reference model
are compared and validated using the additional measured data
mentioned in Section II. The detailed information about the
measured data for model validation is listed in Table VI. In
general, the data sets S1–S5 in Table II are used for channel
modeling in Sections III-A and III-B, and data sets S6–S15
in Table VI are used for model validation in Section III-C.
Herein, the usage of the measured data sets and the process

TABLE V
EXTRACTED MODEL PARAMETERS

Fig. 4. Probability plots of the shadowing and the normal fit.

of model validation are briefly illustrated. For the proposed
model, the training process is conducted in the phase of model
parameters extraction. The configurations in the first line of
Table IV are used for training the data sets S1–S5. The LM
backpropagation algorithm is used for training. The mean
value and standard deviation of shadowing are extracted by
MLE. The model parameters can be obtained. Then, the differ-
ent inputs in data sets S6–S15 are passed through the proposed
model with the corresponding model parameters. Finally, the
output that is predicted RMS delay spread can be calculated
and compared with the measured one. For the reference model,
data sets S1–S5 are used for extracting parameters, i.e., the
mean value and standard deviation of the normal random vari-
ables, by MLE. Then, the RMS delay spread can be generated
by such a normal random variable. Finally, the results can be
compared with the measured RMS delay spreads.

The RMS delay spreads of the measured data, the proposed
model, and the reference model are depicted in Fig. 5. It is
observed that the proposed model exhibits the rising trend
between the RMS delay spread and the Tx/Rx separation. This
is caused by the reason that the LOS components become weak
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(a)

(c) (d)

(e)

(b)

Fig. 5. RMS delay spreads of the measured data, the proposed model, and the normal random variable model: (a) office 2.595 GHz, (b) office 5.8 GHz,
(c) office 7.25 GHz, (d) corridor 2.595 GHz, and (e) stair 2.595 GHz.

compared with other components, such as the scatter, reflec-
tion, and diffraction ones when the Tx/Rx separation increases,
leading to a larger RMS delay spread. Such a tendency is not
characterized by the reference model.

In addition, the measured RMS delay spreads scatter around
the fitted model (average RMS delay spread). Similar to the
shadowing effect of path loss, this phenomenon demonstrates
that the shadowing effect exists in the RMS delay spread as
well. The more precise of the path loss model, the smaller
of shadowing or its standard deviation will be [48]. A similar
conclusion can be found in the RMS delay spread model. As
shown in Fig. 5, the proposed model is not a line but a surface
due to the effect of Rx height. The proposed model covers the

measured data better than the log-distance model and its shad-
owing effect is smaller. This result shows that the proposed
model is more precise than the reference model. Moreover,
the MSE of the proposed model is 8.08 and one of the normal
random variable model is 21.91, verifying the accuracy of the
proposed model.

Another advantage of the proposed model is that it has
good expansibility and generality. Probably, the distributions
of the RMS delay spread will be different under different
conditions. In conventional RMS delay spread models, new
formulas or complicated correction terms may be imported to
the existing models when they are applied to the other envi-
ronments. In contrast, by taking more extensive measurements
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TABLE VI
INFORMATION ABOUT MEASURED DATA USED FOR VALIDATION

and retraining the neural network, the proposed model can be
extended to different environments without changing the struc-
ture of the model. Additionally, more important inputs, such as
the Tx antenna height, the antenna type, etc., can be imported
to the proposed model by increasing the number of inputs and
adjusting the number of the neurons. The proposed model can
also be extended to describe the dynamic channels. Herein, the
process is illustrated. First, the measurement system in the time
domain, such as the direct RF pulse measurement system and
spread spectrum sliding correlator channel sounder, should be
adopted to capture the fast fading dynamic channel data [12],
[49], or the open data of dynamic channels obtained by other
researchers could be used [50]. The data related to the users’
motion or users’ density should be recorded as well. Second,
based on the proposed model, the inputs, including the speed
of motion, the direction of motion, and the number of users
and time are added to the neural network. Then, the measured
input and output data are used to extract the model parameters
according to the process in Section III-B. Finally, the proposed
model describing the users’ motion and users’ density can be
obtained. Thus, a more general RMS delay spread model suit-
able for more complex and ubiquitous IoTs scenarios can be
easily obtained under such a neural network-based framework.

IV. CONCLUSION

The RMS delay spread is modeled as a generalized two-
layer feedforward neural network plus a random variable. The
framework of the neural network-based RMS delay spread
model is discussed at first. In the proposed model, its depen-
dencies on the Tx/Rx separation, frequency, antenna height,
environment, and LOS/NLOS condition are characterized.
Moreover, the shadowing effect describing the uncertainty

of the RMS delay spread is modeled by a normal ran-
dom variable. In addition, the effects of the neural network
configurations on the accuracy of the proposed model are
researched. It is found that the combination of HTS activa-
tion functions and the LM backpropagation algorithm is the
best configuration of the neural network. The proposed model
is experimentally validated as well. Compared with the nor-
mal random variable RMS delay spread model, the proposed
model contains more information about the environments,
thus, exhibiting higher accuracy. Additionally, it can be easily
extended to other scenarios by including more inputs, adjust-
ing the number of neurons and retraining the neural network
without introducing any correction term or changing the basic
framework of the proposed model. The proposed model is
expected to provide significant information for network plan-
ning, system design, and performance improvement in future
ubiquitous IoTs scenarios.
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