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Abstract—Optimal computing resource allocation for edge-
cloud-assisted internet of things (IoT) in blockchain network is
attracting increasing attention. Auction is a classical algorithm
which guarantees that the computing resources are allocated to
the buyers of the computing resource. However, the traditional
auction algorithm only guarantees the revenue gains for the
sellers of the computing resource. How to guarantee the seller
and the buyer of the computing resource are both willing to trade
and moreover bid truthfully is still open problem in computing
resource trading for edge-cloud-assisted IoT. In this paper, we
introduce a broker with the sparse information to manage and
adjust the trading market. We then propose an iterative double-
sided auction scheme for computing resource trading, where the
broker solves an allocation problem to determine how much
computing resource is traded and designs a specific price rule
to induce the buyers and sellers of the computing resource to
submit bids in a truthful way. Thus, the hidden information
can be extracted gradually to obtain optimal computing resource
allocation and trading prices. Hence, the proposed algorithm can
achieve the maximum social welfare meanwhile protecting the
privacies of the buyers and the sellers. Our theoretical analysis
and simulations demonstrate that the proposed algorithm is
efficient, i.e. achieving the maximum social welfare. In addition,
the proposed algorithm can provide effective trading strategies
for the buyers and sellers of the computing resource, leading
to the proposed algorithm satisfying incentive compatibility,
individual rationality, and budget balance.

Index Terms—Internet of Things, edge-cloud computing, com-
puting resource trading, double auction

I. INTRODUCTION

Internet of Things (IoT) [1], [2] is an interconnection among
the objects and equipped with ubiquitous intelligence. The
traditional IoT control system is based on centralized and trust-
dependent structure which limits the interoperability and the
security of the system. Very recently, Blockchain, a decentral-
ized public ledger to record transactions, has been developed
[3], [4]. The blockchain-based IoT, which allows IoT to build
up decentralized trust and reliance among multiple parties,
is attracting increasing attentions [5], [6], [7]. The related
research of blockchain-based IoT works on both architectures
(e.g., IoT data storage and protection, privacy-preserving ac-
cess control in IoT and consensus protocol for IoT [8], [9],
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[10], [11]) and applications (e.g., energy trading, data trading,
smart homes and so on [12], [13], [14]). However, blockchain-
based IoT faces inherent physical constraints as IoT devices
have only limited computation and storage resources on board,
which restricts the opportunities for more sophisticated appli-
cations, e.g., pure Peer-to-Peer (P2P) trading.

To enhance the computational resources and scalability of
blockchain-based 10T, edge-cloud computing has been intro-
duced for blockchain-based IoT to solve different types of
tasks (e.g. real-time processing, resource-intensive application-
s, blockchain mining and consensus process), where the edge
provides limited computational and storage resources with
low latency, and the cloud can provide power computing and
storage resources but with high latency [15], [16].

In edge-cloud-assisted IoT in blockchain network, the com-
puting resource trading problems are studied based on the
traditional auction algorithms [14], [17], where the revenue
gains for the seller can only be guaranteed. If the benefits for
the buyers cannot be guaranteed, the buyers are not willing to
trade and thus the bids are not truthful, so that the desirable
economic benefits are hard to achieve [18]. Clearly, the buyers
and the sellers are conflicting with each other. It is difficult to
reach an agreement if they decide how much computing re-
source to trade, independently. Therefore, a market controller,
i.e. a broker, is required to manage the computational resource
trading market for IoT nodes via a smart contract. However,
how to efficiently trading the computing resource to guarantee
that the seller and the buyer are both willing to trade and
moreover bid truthfully is still open problem.

In this paper, we address the computing resource trading
problem for edge-cloud-assisted IoT in blockchain network.
We build a pure P2P computing resource trading system for
edge-cloud-assisted IoT in blockchain network to ensure the
computing resource balance among IoT devices and, moreover,
to avoid problems such as privacy leakage and single-point
failure. The main challenges of the computing resource trading
problem for edge-cloud-assisted IoT are as follows: 1) How
can ensure incentive and truthful computing resource trading
to achieve the desirable economic benefits meanwhile protect-
ing the private information (including the current computing
resource state, the capacity, the welfare, etc.) of the computing
resource sellers and buyers during the trading. 2) How much
computing resources should each computing resource seller
supply to each computing resource buyer and how much would
be the reward? And, from the perspective of the computing
resource buyer: how much computing resource should each
computing resource buyer request from each computing re-
source seller and how much should they pay?
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To address these challenges, we first design a computing
resource trading market where a set of computing resource
buyers compete to trade with a set of computing resource
sellers, and a broker manages the marketplace without the
actual needs of buyers and sellers. Second, we propose to
employ an iterative double-sided auction scheme [19] to the
computing resource trading for edge-cloud-assisted IoT in
blockchain network. The broker collects the buyers’ requests
and the sellers’ supplies and then decides how much com-
puting resource of the seller will be provided to each buyer
by solving the allocation problem. In addition, the broker
designs a specific price rule to induce the buyers and sellers to
submit bids in a truthful way, so that the hidden information
is gradually extracted, and at the same time, the maximum
social welfare can be achieved.

To our knowledge, this is the first study to tackle the
computing resource trading problem for edge-cloud-assisted
IoT in blockchain network based on an iterative double-
sided auction scheme. Our contribution can be summarized
as follows. 1) We establish a pure P2P computing resource
trading system in blockchain network to achieve secure and
trusted computing resource trading. 2) We introduce the broker
to manage the trading market and then propose an iterative
double-sided auction-based algorithm for the computing re-
source trading. The proposed algorithm, with protecting the
private information of computing-resource trading participants,
satisfies the desirable economic properties including efficiency
(i.e., maximizing the social welfare), incentive compatibility
(i.e., sellers and buyers truthfully reveal their needs according
to their private information), individual rationality (i.e., sellers
and buyers are willing to trade), and budget balance (i.e.,
the broker does not lose money). 3) Numerical simulations
are conducted to evaluate the performance of the proposed
algorithm for the computing resource trading problem.

The remainder of this paper is structured as follows. The
related work is summarized in Section II. Our system model
for the computing resource trading and the proposed algorithm
based on an iterative double-sided auction scheme are intro-
duced in Section III. The performance evaluation is presented
in Section IV, and our conclusions are summarized in Section
V.

II. RELATED WORK

The related research of blockchain-based IoT works will
be summarized in this section. Xiong et al. [17] introduced
the edge computing for IoT blockchain for offloading mining
tasks. Liu et al. [20] presented a mobile edge-computing-
enabled wireless framework with the blockchain technology,
where computation-intensive tasks could be offloaded to edge-
computing nodes. Xu et al. [21] addressed a blockchain-
enabled decentralized resource management method which
could reduce the cost of the energy consumption by re-
questing migration and scheduling among data centers. The
study [22] investigated the multilayer computation offload-
ing framework which integrates a distributed incentive and
reputation mechanism. Kang et al. [23] studied the mobile
edge computing integrated with vehicular networks based on
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consortium blockchain technology. Compared with the above
studies, this paper addresses the computing resource trading
problem for edge-cloud-assisted IoT in blockchain network
and study the optimal computing resource trading based on the
double auction scheme for encouraging incentive and truthful
computing resource trading.

III. SYSTEM MODEL FOR P2P COMPUTING RESOURCE
TRADING IN BLOCKCHAIN AND PROPOSED ALGORITHM

In this section, we first build blockchain network for edge-
cloud-assisted IoT. Then, we build the system model of the
computing resource trading and propose to use the iterative
double-sided auction scheme for computing resource trading.

A. Blockchain Network for Edge-cloud-assisted loT

In an edge-cloud-assisted IoT system, the computing re-
source trading happens in IoT nodes including the edge-cloud
computing service providers (ECSPs) and IoT devices. Here
ECSPs mainly play the role of selling computating resources
to IoT devices and its neighboring edge server nodes. IoT
devices play different roles including computing resource sell-
ers, computing resource buyers and idle nodes. The computing
resource sellers own surplus computing resources to sell and
obtain resource coins. The computing resource buyers have a
computing resource demand and need to pay resource coins
(the digital cryptocurrency is used as resource coins) to sellers.
Idle IoT nodes neither buy computing resources from other IoT
devices, nor sell computing resources to others.

We employ the blockchain technology to guarantee secure
P2P computing resource trading. Blockchain is composed of
a set of blocks. Every block has two parts, namely transac-
tional data and a unique hash value. The transactional data—
including pseudonyms of ECSPs and IoT devices used to
protect privacy, data type, raw data, and the timestamp of
transaction validation—are encrypted and signed with digital
signatures for security. Then, the transactional data are packed
into blocks. The hash value is used as a link pointing from the
current block to the previous block. Thus, a series of blocks
connected in a linear chronological order form blockchain.

The security of blockchain directly relies on the consensus
mechanism which is carried out by the authorized ECSPs and
IoT devices with the valid proof-of-work. The fastest ECSP
or IoT device becomes the leader that announces its proof-
of-work, block data, and the timestamp to other ECSPs and
IoT devices as auditors for audit and verification. The auditors
then audit the block data and announce the audit results with
signatures. When receiving the audit results, every auditor
compares the result with those of others, and then sends
feedback information to the leader. The leader collects and
analyzes the feedback information. If all the auditors reach
a consensus, the block is verified. The leader then sends the
block data with the signature to the ECSPs and IoT devices
and will receive resource coins. The consensus mechanism
can guarantee the dependability and security of blockchain
systems.
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Fig. 1. System model and computing resource trading market in blockchain.

B. Proposed Algorithm

We consider such a system model of P2P computing re-
source trading for edge-cloud-assisted IoT nodes in blockchain
network: 1) there is a broker who manages resource-trading
participants and executes the trading operations. The broker
is chosen with the sparse information (nodes with surplus
computing resources are viewed as nonzero elements and
nodes without surplus computing resources are viewed as zero
elements). 2) there is a group of N7 computing resource buyers
and N; computing resource sellers. The ¢th buyer is indexed
as B; and a set of buyers is indexed as a vector b = {B;|i €
{1,2,...,N}}. The jth seller is indexed as S; and a set of
sellers is indexed as a vector s = {S;[j € {1,2,...,N;}}.
Each buyer can request different demands from different sell-
ers and each seller can serve more than one buyer. The buyer
B; is assumed to demand the computing resource amount
a;; from the seller S;. The demands of B; from different
sellers are defined as a vector a; = {a;;|j € {1,2,...,Ns}},
and all the demands of all buyers are denoted as the matrix
A = {a;]i € {1,2, ..., N;}}. Each seller is assumed to supply
the computing resource amount d;; to the buyer B;. The
supplies of S; to different buyers are indexed as a vector
d; = {dj;|i € {1,2,...,N;}}. All the supplies of all sellers
are indexed as the matrix D = {d;|j € {1,2,...,N;}}.
The buyer B; interacts with the seller .S; and submits a bid
price to the broker, which is indexed as x;;. The buyer B;
interacting with each seller submits the bid prices that are
indexed as a vector x; = {z;;]j € {1,2,...,N;}}. All bid
prices of buyers to different sellers are indexed as a matrix
X = {x;|i € {1,2,..., N;}}. Similarly, the seller S; serving
the buyer B; submits a bid price to the broker that is indexed as
y;i- The seller S; serving each buyer submits the bid prices
that are denoted as a vector y; = {y;;|¢ € {1,2,...,Ns}}.
All bid prices of sellers to different buyers are denoted as a
matrix Y = {y;|j € {1,2,..., N;}}. Under our consideration,
we establish the system model and computing resource trading
market in blockchain network, shown in Fig. 1.

Problem Description: 1) One part for the buyer: denote
Ui;(a;;) as the satisfaction of the buyer B; from satisfying
its request a;; through the seller .S;, and denote U;(a;) as the

satisfaction of each buyer B; interacting with different sellers.
The function U(-) should be positive, increasing, smooth, and
strictly concave, which is given as:

Ny
Uz(az) = W; Z log(aij — aij * Zij + 1), (1)
7j=1

— T

where w; = 55 is the buying willingness of B;, CRS is the
Computing Resource State before buying and 7 is a constant.
z;; is the distance factor between B; and S;.

2) The other part for the seller: let Cj;(d;;) be the cost of
the seller S; when S; supplies computing resource amount
dj; to the buyer B; and let C;(d;) be the cost function of S}
serving different buyers. The function C(-) is also a smooth
and strictly convex function, which is given as:

Ny Ny
Cj(dj) = nl(z dji)Q “+ no Zdji, (2)
i=1 i=1

where n; > 0 and ny > 0 are cost factors.

The sum of the utility functions of all pairs is the social
welfare [24]. There needs a market controller, i.e., a broker
to guarantee that the market will run efficiently. The broker
solves the social welfare maximization problem (SWMP) to
match the buyers and the sellers as follows:

Nr Ny
SWMP : %%szij(aij’dﬁ)
i=1 j=1
Ny Ny
i=1 j=1
Some constraints are imposed on the SWMP problem:
Ny
a"™ < ai; <a", i€ {1,2,..,N} (4)
j=1

Np
> dji <dp, j € {1,2,..,N;} (5)
=1

Q5 dei» Vi € {1,2, ...,_NI}7
Vi e{1,2,...,N;}, (6)
a;; >0, Vie{l1,2,..,Ni},
vje{1,2,..,N;}, 7)
where a7 and a™® are the minimum and the maximum

K2 3
demand of B;, respectively; and d7"** is the maximum supply
of S;. The constraint (6) indicates that the amount supplied
by each seller should satisfy the demand of each buyer.
If a;; = dj;,Vi,j, the market is equilibrium. From the
transaction perspective, the buyers want to maximize their
satisfactions, whereas the sellers want to minimize their costs.
The broker will decide the optimal allocation of computing
resources to meet the buyers’ demands. From the social
perspective, the social welfare will be maximized when all
trading is completed.

The SWMP has a unique solution, because it is strictly
concave and moreover the constraint sets are convex. Re-
laxing the constraints and using the Lagrangian multipliers
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a, 3,7, A\, u, the Lagrangian of the SW M P can be written as

Ni N
fl(A7D7a7B77’A7#):ZUi(aZ) ZOJ(d])
i=1 =1
Ny Ny Ny IJVJ
=@ =Y aig) = Y Bi) ai; — af")
i=1 j=1 i=1  j=1
Ny Ny N; Np
- Z’YJ(Z dji — d;nm) - Z Z Aijlaj; — dj;)
j=1  i=1 j=1i=1
N; N;p
+ ZZUZ’jaija 3
j=1i=1

where a > 0,8 > 0,7 > 0, A > 0, > 0 for the equality and
inequality constraints. According to the Karush-Kuhn-Tucker
(KKT) conditions [12], the optimal solutions of D and A
satisfy,

Va,; [1 =0, €))

Vdjifl =0. (10)

Thus, obtain,

Vi, Ui(ai) + i — Bi — Nij + pij = 0, (11)

—VdjiCj(dj) — 5 + )\ij =0. (12)
The complete information of each buyer’s satisfaction and each
seller’s cost are private. Thus, the equations (11) and (12)
cannot be solved directly. We need to design a scheme to
extract the hidden information of buyers and sellers.
Iterative Double-sided Auction Scheme: We introduce the
concept of an iterative double-sided auction scheme for com-
puting resource trading. The iterative double-sided auction
scheme can extract the hidden information of sellers and
buyers gradually, and at the same time, maximize social
welfare. In our P2P computing resource trading market, the
broker manages the computing resource allocations for all
buyers and sellers. The buyers announce how much they are
willing to pay and the sellers announce how much they are
willing to sell. The broker collects the buyers’ requests and the
sellers’ supplies and optimizes the broker allocation problem
(BAP) to determine how much of the computing resource of
the sellers will be supplied to each buyer. The buyers and the
sellers comply with the broker’s decisions if their own interests
are satisfied.

The double-sided auction scheme includes two steps in
each iteration. First, the buyer B; interacts with the seller
S; and submits a bid price x;; to the broker. The seller S;
serving the buyer B; submits a bid price y;; to the broker.
After submission of bid prices, the broker decides the optimal
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demand and supply by optimizing the BAP as follows:

Ni Ny

1
BAP : IX%{{;;%M Ina;; — iyjzd?z} (13)
Ny
st.oa"™ < a; < a, Vi€ {1,2,..,Nr}, (14)
j=1

Np
D dji <dpt vie{1,2,.., N}, (15)
=1

a; <dji, Vie{l,2,.., N},
Vj e {1,2,...,N,}, (16)
ai; >0, Vie{l,2,.., N},
Vje{1,2,..,N;}. (17)

Although the BAP is different from the SW M P, it has the
same constraints. Based on the submitted bid prices, the broker
can allocate computing resources for each buyer and seller,
leading to achieving effective market equilibrium. The BAP
is also strictly concave. Similarly, the Lagrange function of
the BAP can be written as

fQ(Avaavﬁv’%)‘vﬂ)
NI NJ NJ NI

1
= Z Zfﬂzj Ina;; — iyjid?i + Z Zﬂijaij~
i=1 j=1 j=11=1
Ny ’ N, Np ’ Ny
= (@™ =Y ) = > BiD aij — a )
i=1 —1 =1 =1
Ny Ny ’ Ny NIJ
- ZI%'(Z; dji — dj*"") — 221 z; Aij(ai; — dji).  (18)
j=1 = j=1i=

Solving the BAP results in new optimal allocations A and

D to announce to buyers and sellers for trading. The unique

optimal solution can be obtained by the KKT condition. The

optimal solutions of A and D for the BAP satisfy

Vaufo= 22 ai= =Xy +pi =0, (19)
ij

V. fa = —yjidji — v + Xij = 0, (20)

which lead to the rules of the optimal allocations as follows:
Tij
Qi = )
B+ Ny — i — i
dj; = Xy = —
! Yji

2
(22)

The broker can allocate the optimal allocations for each
buyer and seller according to (21) and (22).

To ensure that the above solutions can maximize social
welfare, the KKT conditions need to be matched for the
SW MP and the BAP. Hence, we obtain

() =" oy — a0 Ua,
Va,; Ui(ai) = aij = Tij = Qij as; Ui(ai), (23)
1 0
Y Ci(d) = —ypidys >y = = =—Cy(d,), 24
J J Jr=) J d] adz] J J
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which implies that the broker solving the SWMP is
equivalent to solving the BAP if the buyer B; and the seller
S; submit the bid prices based on Eq. (23) and Eq. (24).

The double-sided auction scheme needs multiple iterations.
At each iteration, buyers need to solve their own buyers’ util-
ities maximization problem (BM P) to update bids according
to the new demand allocation by the broker, and sellers need to
solve their own sellers’ utilities maximization problem (S M P)
to update their bids according to the new supply allocation by
the broker. Hence, the broker has to design price rules for
buyers and sellers, so that each participant will be induced to
submit the bid prices based on Eq. (23) and Eq. (24).

Next, we try to derive the payment and reward functions
that induce buyers and sellers to bid according to (23) and
(24). Define P;(x;) as the payment of the buyer B; given to
the broker for the service. The defined R;(y;) denotes the
reward of the seller S; given by the broker. P;(x;) depends
on the allocated mount a; of the buyer B;, whereas R;(y;)
depends on the allocated amount d; of the seller S;.

Thus, the buyer B; needs to solve its own BMP to
determine its optimal bid price:

BMP : [Ui(ai) — Pi(Xi)], (25)

max

X
and the seller S; needs to solve its own SM P to determine
its optimal bid price:

SMP :

max
Yi

[R;(y;) — Cj(dy)]. (26)

The price rules of the buyer B; and the seller L; are given as

27)

(28)

Theorem 1: The price rules (27) and (28) make the optimal bid
prices for buyers and sellers satisfy (23) and (24), respectively.

Proof: The optimal bid price of the buyer B; satisfies the
function (25). Hence, we have

=0. 29
83:,»]» 8.%1']' ( )
Based on (21), we obtain
an(ai) an(ai) 8aij aUl(al) Qi
= = —. 30)
al’ij aaij 8:%- 8(11-]- Tij
According to the bid price (27), we have
— =1 31
T 31)
Hence,
a[]z (az-)

The solution (32) is the same as (23), which means that the
price rule (27) satisfies (23).

Similarly, according to Egs. (22), (26), and (28), we obtain
OR;(y;) 0C;(di)

=0. (33)
8yji 3yj¢
and
C;(d;) B 10
ad; Nji = = Yji = @aTUCJ(dJ)' (34)

The solution (34) is the same as (24), which means that the
price rule (28) of the seller S; satisfies (24).

Hence, the broker solving the BAP is equivalent to solve
the SW M P, leading to social welfare maximization by the it-
erative double-sided auction for computing resource trading.ll
Proposed Algorithm: In each iteration of Algorithm 1, with
the initial bids X and Y submitted by buyers and sellers, the
broker solves the BAP to compute the allocated demand and
the allocated supply (lines 3-4 in Algorithm 1). Meanwhile, the
broker computes the price rules (27) and (28) (line 5). Based
on the new allocations announced by the broker, buyers and
sellers compute the optimal bid prices by solving BM P and
SMP (lines 6-8), respectively. These optimal bid prices will
be submitted to the broker for the next iteration. The algorithm
will stop when the convergence conditions are satisfied. Thus,
the new optimal allocated amounts and the new optimal
bid prices can be obtained through a number of iterations.
Algorithm 1 alternatively optimizes BAP, BMP and SMP
problems which are strictly concave objective functions under
the convex constraints (4)-(7). The convergence of Algorithm
1 can be shown in the simulation results of Section I'V.

Algorithm 1 has a relatively small communication overhead
because there is a polynomial number of messages that need
to be circulated in the market. In each round of Algorithm 1,
there are 2N;N; bids that need to be communicated from
the buyers for all their base stations. Similarly, the broker
announces the N;yNj + N variables to the N;N; bidders.
Thereby, the complexity analysis is O((N;N;)?) per round.

In addition, Algorithm 1 satisfies the following properties.

e It is efficient. The buyers and sellers submit the bids
according to (23) and (24), leading to the optimal solutions
of BAP are identical to the optimal solutions of SW M P.
Hence, the social welfare can be maximized and the efficiency
of market can be guaranteed.

e It is incentive compatible. Although the buyers and sellers
do not communicate the private information, they are induced
to submit bid prices truthfully from (23) and (24). Thus, the
hidden (private) information can be revealed gradually.

e It is individually rational. According to (29) and (33),
we have Ui(ai) — Pl(Xz) > 0 and Rj(yj) — Cj(dj) > 0.
The buyers and sellers obtain nonnegative utilities through
participating in trading. Thus, they are willing to trade.

e It is budget balanced. The rewards to the sellers should
not exceed the payments from the buyers. This means that the
broker will not suffer any loss with the iterative double-sided
auction algorithm.

IV. SIMULATIONS

In this section, we examine the performance of the proposed
algorithm based on the iterative double-sided auction scheme
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Algorithm 1 Proposed Algorithm

1: Initialize bid matrices X and Y, flag < 1, T + 0;

2: while flag =1 do

3:  Buyers and sellers submit bid prices X and Y to the
broker;

4:  The broker solves BAP to obtain the optimal allocated
amounts A and D;

5. The broker computes P;(x;) and R;(y;) according to
Egs. (27) and (28);

6:  The broker announces the optimal allocated amounts A
and D to buyers and sellers, respectively;

7:  According to A, buyers compute their optimal bid price
X by solving BM P;

8:  According to D, lenders compute their optimal bid
prices Y by solving SM P;

9: T=T+1.

10:  Repeat until convergence, i.e., (xEJT) - xz(-jT_l))/:z:ng) <
& and (45 — ] )y < g

1:  flag =0;

12: end while

13: Output: A, D, X, Y.

@

Fig. 2. The computing resource market with five buyers and five sellers.

in terms of social welfare maximization. Then, we provide
useful decision-making strategies for the ECSPs and IoT
devices.

Experiment Setup: The computing resource market is a model
of 10 participants, where B; (i € {1,...,5}) is denoted as the
buyer and S; (j € {1,...,5}) is denoted as the seller (Fig.
2). The parameters in the proposed algorithm are presented
in Table I [23]. Every connecting transmission is assumed as
a unit distance. The term z;; represents the distance factor
between B; and S, which is multiplied by a factor of 0.01,
ensuring that z;; is in a reasonable range. Table III presents
the complete information of the distance factor. For example,
the distance factor between By and S5 is 0.01%6. In the utility
function (1), a;; * z;; represents the transmission loss.
Performance Evaluation: We evaluate the proposed algorithm
considering three cases with 5 buyers/5 sellers, 10 buyers/10
sellers, and 15 buyers/15 sellers. The social welfare results
achieved by the proposed algorithm in the three cases are

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE 1
PARAMETER SETTINGS

Parameters Values Parameters | Values
agni" [5,10] a® [10,20]
CRS [5,10] d;’“”” [10,20]

n1 [0.005,0.025] n2 (0,1]

80
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60 ——Case of 10 buyers 10 sellers
-6-Case of 15 buyers 15 sellers

3]
o
T

Social welfare
N w N
o o o
T T

=
o

5 10 15 20
Iteration

&

o

Fig. 3. Social welfare in the cases of 5 buyers/5 sellers, 10 buyers/10 sellers,
and 15 buyers/15 sellers.

shown versus iterations in Fig. 3. Each plot was averaged over
100 independent trials. We observe that the social welfare in
the three cases increases versus the number of iterations and
rapidly converges to the stable value. Furthermore, it is clear
to see that higher social welfare results can be achieved with
more buyers and more sellers from Fig. 3. In addition, the
average iteration numbers until convergence increase slightly
with more buyers and more sellers. These experimental results
verify that the proposed algorithm is efficient. To evaluate
the impact of the Computing Resource State (C'R.S) before
buying, we investigated the proposed algorithm in terms of
the social welfare with different values of CRS. Fig. 4 shows
social welfare versus C'RS values, and it can be seen that
social welfare decreases with increasing value of C'RS. This
is because the larger is C'RS, the smaller is the borrowing
willingness w; and the smaller is the social welfare.

The gap between the total allocated demands and supplies
of the computing resource in the three cases is shown in Fig.
5. It is evident that the gap between the allocated demands
and supplies finally converges to zero. The results verify that
the market can achieve equilibrium by the proposed algorithm
with different numbers of buyers and sellers. In other words,
the demands of buyers can match the supplies of sellers in the
market.

The payments of all buyers and the rewards of all sellers in
the cases of 5 buyers/5 sellers, 10 buyers/10 sellers, and 15
buyers/15 sellers are shown in Fig. 6. Clearly, the payments
of all buyers are larger than the rewards of all sellers in each
case. The results demonstrate that the broker does not suffer
any loss, and moreover, could gain benefit. In other words, the
proposed algorithm is budget balanced.

In Table II, we summarized all indexes in the cases of
5 buyers/5 sellers, 10 buyers/10 sellers, and 15 buyers/15
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Fig. 4. Social welfare versus the value of C'RS in the cases of 5 buyers/5
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Fig. 5. Gap between the allocated demands and the allocated supplies in the
cases of 5 buyers/5 sellers, 10 buyers/10 sellers, and 15 buyers/15 sellers.

sellers, including the social welfare (SW), the payments and
the rewards of all buyers and the rewards of all sellers, the
buyers’ utilities maximization (BM) and the seller’s utilities
maximization (SM). According to Eq. (3), Eq. (25) and Eq.
(26), we had BM+SM=SW+Reward—Payment, which also
can be verified from the results of Table II.

TABLE II
COMPARISONS

SW Payment | Reward BM SM
5x5 12.7321 27.67 20.5895 | 2.0280 3.6714
10 x 10 | 39.8264 57.99 46.5344 | 10.6078 | 17.7601
15 x 15 | 73.8881 131.40 122.67 | 17.7765 | 46.3875

According to the above Figs. 3-6 and Table II, it can be seen
that the proposed algorithm based on the iterative double-sided
auction scheme can reveal the private information gradually
and obtain optimal solutions, resulting in achieving social
welfare maximization. Hence, the proposed algorithm satisfies
the property of incentive compatibility.

The individual bids of buyers and sellers for the case of 10
buyers/10 sellers are shown in Fig. 7 and Fig. 8. The vertical
scale represents the bids and the horizontal scale represents
the buyer’s index. The color bars in Fig. 7 show the bids from
the 10 buyers to the 10 sellers, while the color bars in Fig. 8

Il Payments of buyers
1201 | JRewards of sellers 1

100 - 7

®
o
T
L

o
o

ol

10X10 15X15
Fig. 6. Payments of all buyers and rewards of all sellers in the cases of 5
buyers/5S sellers, 10 buyers/10 sellers, and 15 buyers/15 sellers.

Payments and Rewards
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o
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Index of buyers

Fig. 7. Bids from 10 buyers to 10 sellers.

show the bids from the 10 sellers to the 10 buyers. We note
that if a certain seller gives a high bid to a certain buyer, the
latter will try to force down the price and give a low bid to
that seller. It can be seen that the bid from the seller Sg to the
buyer B is the maximal bid among all bids from other sellers
to the buyer B; in Fig. 8. Therefore, the buyer B; submits
the minimum bid to the seller Sg (see Fig. 7). In turn, if a
certain seller submits a low bid to a certain buyer, the latter
will try to raise the price and win the trade from this seller.
For example, the bid from the seller Sg to the buyer By is the
minimum among all bids to other buyers. Hence, the buyer
By submits the maximum bid to the seller Sg among all bids
from other buyers to the seller Sg, so that the buyer By wins
the trade with the seller Sg. These results demonstrate that our
approach matches the market discipline.

In addition, we studied the relationship between the distance
factor and the allocated demands of buyers. Fig. 9 shows
the allocated demands of buyers, and Table III presents the
distance factor z;; for the case of 10 buyers/10 sellers. We see
that the distance factor is larger, and the transmission loss is
larger, so the computing resource trading should be decreased
and the bids will be decreased. Table III indicates that the
distance factor for By to Sg is longer than to other sellers,
i.e., 216 = 0.09. The buyer B; wants to buy a smaller amount
of the computing resource from Sg than from other sellers, i.e.,
a16 = 0.1023 (see Fig. 9), so the corresponding transmission
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loss is decreased. Furthermore, the bid of the buyer B to S
(see Fig. 7) is smaller than to other sellers, which is submitted
based on the buyer’s distance factor. In turn, the distance factor
for By to Sg is shorter than to other sellers, i.e., zgg = 0.01.
The buyer By wants to buy a higher amount of the computing
resource from Sg than from other sellers, i.e., ags = 5.0871,
and the bid of the buyer By to Sg is the maximum compared
with other sellers. These results match the market discipline
well.

TABLE III
DISTANCE FACTOR 2;j FOR THE CASE OF 10 BUYERS/10 SELLERS.

Zij | S1 | S2 | S3 | Sa | S5 | Se | S7 | Ss | So | Sio
By | 0.05] 0.06] 0.03] 0.05| 0.05] 0.09| 0.06| 0.02| 0.07| 0.05
Bs | 0.04| 0.06| 0.07| 0.08] 0.07| 0.05| 0.07| 0.02| 0.08| 0.06
Bs | 0.06| 0.08| 0.02| 0.07| 0.05| 0.08| 0.04| 0.05| 0.03| 0.04
By | 0.05] 0.07] 0.03] 0.02| 0.07| 0.04| 0.05| 0.03| 0.02| 0.08
Bs | 0.02] 0.09] 0.08] 0.04| 0.03] 0.03| 0.04| 0.08| 0.02| 0.07
Bg | 0.04| 0.01| 0.09| 0.02| 0.05| 0.04| 0.08| 0.05| 0.06| 0.03
B7 | 0.03] 0.02| 0.05| 0.04| 0.08| 0.02| 0.05| 0.03| 0.02| 0.05
Bg | 0.09] 0.07| 0.03] 0.04| 0.02] 0.03| 0.05| 0.06| 0.08| 0.07
Bg | 0.08] 0.07| 0.04| 0.03| 0.09] 0.01| 0.03| 0.07| 0.02| 0.04
Bio| 0.02| 0.07] 0.08| 0.07| 0.06] 0.08| 0.06| 0.09| 0.07| 0.06

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

V. CONCLUSIONS

In this paper, we have developed an optimal computing
resource allocations based on the iterative double-sided auction
scheme for edge-cloud-assisted IoT in blockchain network,
where the broker solves the computing resource allocation
problem and designs the price rules to extract the hidden
information of the computing resource sellers and buyers,
leading to the computing resource sellers and buyers willing
to trade and moreover submitting the bids in truthful way.
Thus, the proposed algorithm can achieve the social welfare
maximization meanwhile protecting the private information
of the sellers and buyers. From both theoretical analysis
and experimental results, we have shown that the proposed
algorithm based on an iterative double-sided auction scheme
is efficient, has individual rationality, incentive compatibility,
and is budget balanced. For the future work, we will consider
the optimal computing resource allocations for edge-cloud-
assisted IoT in blockchain network based on machine learning,
e.g. sparse neural network, deep learning.
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