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Abstract—In recent years, in order to provide a better quality
of service (QoS) to IoT devices, the cloud computing paradigm
has shifted towards the edge. However, the resource capacity
(e.g. bandwidth) in Fog network is limited and it is essential to
efficiently bind the IoT applications with stringent QoS require-
ments with the available network infrastructure. In this paper,
we formulate a joint user association and resource allocation
problem in the downlink of the Fog Network considering the
evergrowing demand of QoS requirements imposed by the Ultra-
Reliable Low Latency Communications (URLLC) and enhanced
Mobile Broadband (eMBB) services. First, we determine the
priority of different QoS requirements of heterogeneous IoT
applications at the Fog Network by enforcing the analytical
framework using an analytic hierarchy process (AHP). Using the
AHP, we then formulate a two-sided matching game to initiate
stable association between the Fog Network infrastructure (i.e.,
Fog devices) and IoT devices. Subsequently, we consider the
externalities in the matching game which occurs due to job delay
and solve the network resource allocation problem by applying
the best-fit resource allocation strategy during matching. The
simulation results illustrate the stability of the user association
and efficiency of resource allocation with higher utility gain.

Index Terms—Fog computing, Internet of Things (IoT), Ultra-
Reliable Low Latency Communications (URLLC), enhanced
Mobile Broadband (eMBB), Resource allocation.

I. INTRODUCTION

THe emerging Fog Network technology is considered to
be indispensable for IoT devices providing a wide variety

of inherent features such as low latency, location awareness,
mobility and wireless access capability unlike its predeces-
sor cloud [1]. In fact, gateway devices are most commonly
considered as parts of the Fog Network infrastructure (e.g.,
Fog) because of their vicinity to IoT devices. With some
computational and storage capabilities combined with the
connectivity functions, the Fog devices seamlessly associate
with the IoT devices to provide a cloud like reinforcement
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to the IoT applications at the edge. In both IoT and the Fog
Network, one core objective is to provide the quality of service
(QoS) to the end users, which can be achieved by efficiently
allocating the limited network resources to heterogeneous IoT
applications and services. Therefore, the end users use the
licensed or unlicensed spectrum, depending on the availability
of the network resources and heterogeneous network interfaces
for a wide variety of IoT applications [2]. As the number
of heterogeneous IoT devices is increasing exponentially, the
amount of real-time and non-real-time IoT traffic with multiple
QoS requirements is also rapidly increasing. The typical QoS
requirements of the Internet traffic of heterogeneous applica-
tions are depicted in Table I. Yet in IoT, any newly discovered
IoT devices in the environment may necessitate entirely new
IoT applications that require different resource requests and
rapid resource deployment [3]. As a result, the priority of the
QoS parameters in Table I is diverse.

TABLE I: Typical QoS requirements of Internet traffic [4]

Applications Delay (s) Throughput (Mbit/s) BER
RT Data 0.001 ∼ 1 < 10 0
Image 1 2−10 10−4

Audio 0.25 0.064 < 10−1

Video 0.25 100 10−2

In that case, the resource allocation has to be mapped to
a particular IoT application, depending on the application
type, resource demand, and service priority [5]. For example,
the Ultra-Reliable Low Latency Communications (URLLC)
service type [6] applications have high requirement of a
tolerable bit error rate (BER) followed by ensuring an ac-
ceptable data delay [7]. In contrast, the enhanced Mobile
Broadband (eMBB) service type [8] applications in Fog net-
work generating real time IoT traffics [9] may have more
stringent requirement on the bandwidth requirement than that
of timeliness and error free communication [10].

Most of the traditional distributed and centralized resource
allocation schemes for IoT mainly focus on the IoT service
or task provisioning [11], [12] rather than considering the
user and channel state information, and the priority of the
application specific QoS parameters. As a result, QoS man-
agement for heterogeneous IoT applications is still an open
issue and is not well-investigated. In a typical cellular network,
the optimization [13] and game theoretic [14] resource allo-
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cation and QoS management approaches are often subjected
to different application specific QoS parameters. However, in
IoT, it is essential to consider not only application specific
QoS parameters, but also the prioritization of QoS parameters
along with environmental variations such as externalities, [15]
while allocating the application specific network resources.

Under the above circumstances, in this paper we propose a
joint user association and resource allocation scheme that not
only evaluates the application specific QoS requirements, but
also considers the priority of the QoS parameters. Furthermore,
we consider the network-wide stability during self-organizing
user association and resource allocation for IoT applications
in a dynamic Fog Network environment. In essence, the main
contributions of this paper are as follows:

• We formulate a joint user association and resource al-
location problem in the downlink of the Fog Network
with QoS constraints, and we show that the centralized
optimization for this problem is NP-hard. Therefore, we
provide an analytical framework AHP (Analytic Hierar-
chy Process) to decompose the complex QoS manage-
ment problem into manageable and tractable hierarchical
sub-problems to prioritize the QoS parameters and re-
quirements of the eMBB and URLLC service type IoT
applications.

• We formulate a two-sided matching game to initiate the
user association followed by resource allocation between
the Fog Network infrastructures (i.e., Fog devices) and
the IoT devices. Furthermore, the AHP based analytical
framework provides a qualitative QoS evaluation that
significantly enhances the performance of the matching
outcome by prioritizing the application specific QoS
parameters while creating the preference order of the
players. We also applied the “best-fit” network resource
allocation strategy for the matching to ensure stability
in user association, which deals the externalities in the
one-to-many matching game.

• We perform extensive numerical analysis to evaluate the
performance of the proposed approach. The results show
that the integrated AHP and matching game approach for
QoS aware joint user association and resource allocation
achieves higher utility gain for the users. In addition, the
efficiency of the “best-fit” resource allocation strategy in
the matching game outperforms the traditional matching
and AHP based approach. The results also demonstrate
the stability of the association between the IoT and Fog
devices in the case of a dynamic and scalable network.

The remainder of the paper is organized as follows. In Sec-
tion II, we present an extensive literature review based on the
current research. In Section III, we present the network model
and problem formulation. Section IV explains in detail how
we solve the proposed optimization problem with AHP and
matching theory and deal with the externalities by applying
the “best-fit” resource allocation strategy during matching. In
Section V, we present the numerical analysis to validate the
performance and efficiency of our proposed approach user
association and resource allocation. Finally, in Section VI we

conclude the discussion.

II. RELATED WORKS

A number of studies have proposed new mathematical
models, including optimization theory [16], game theory [17],
machine learning [18] and an analytic hierarchy process (AHP)
[19], to capture the user perceived QoS for enabling network
performance analytics [20], [21] for network resource alloca-
tion. In order to solve the network resource allocation problem,
in [22], the authors proposed a solution to the problem of
assigning services with heterogeneous and noninterchangeable
resource demands to the multiple network interfaces of an IoT
device. However, the convergence rates of the optimization-
based resource allocation approaches are slow and unsuitable
for dense large scale network [23]. In fact, this may cause
instability in the network, as the number of IoT devices in the
network may increase or decrease over time.

In [24], the authors proposed AHP to managing resources
in a large-scale heterogeneous wireless network that supports
reconfigurable devices. In [25], the authors considered user
centric requirements (such as bandwidth) and network centric
concerns (such as load balancing and designed utility func-
tions) to precisely quantify the relationship between the QoE
and these attributes, and the preference weights are calculated
by AHP. In [26], the authors focusd on considering the impact
of installing remotely controlled switches in the reliability
indices as well as the AHP decision making algorithm for the
switch allocation. However, the AHP based decision making
is unable to address the effects of the preference correlation on
the outcomes generated by applications that require two-sided
joint decision making, where the preferences of both sides are
equally important.

In [27], the authors proposed a reinforcement learning based
code offloading mechanism in Fog network to ensure low-
latency service delivery towards mobile service consumers.
In [28], the authors proposed ThinkAir, which uses dynamic
adaptation and dynamic scaling of computational power in
the mobile cloud computing. The advantage of applying a
reinforcement learning algorithm like Q-learning is that it
can converge to the optimal value in the case of discrete
problems. However, the approach is more suitable for a closed
environment and becomes infeasible if the state space is too
large.

The user perceived quality of the network performance
should be analyzed for different QoS requirements imposed
by the user centric IoT application and services at the edge of
the network or Fog radio access network (F-RAN) [29]. The
traditional game theoretic approaches are widely adopted in
both the existing cellular and F-RAN architecture for resource
allocation where the IoT devices are likely to be deployed
[30] [31] [32]. However, the problem of using conventional
game theoretic approaches in IoT is that, in most of the cases,
the external effects and the application specific QoS priorities
of the IoT devices are overlooked during two-sided decision
making for the network resource allocation. Therefore, the
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Fig. 1: Fog Network Model

stability of the matching game is not guaranteed in a dynamic
IoT environment.

In the next section, the problem formulation for the joint
user association and resource allocation in the Fog network
model is presented in detail.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

One of the fundamental challenges for Fog devices in
existing cellular networks is the user association where the Fog
devices and IoT devices have different sizes, capacities and
capabilities [33]. In Fig. 1, let us consider a set of Fog devices
R =

{
1, . . . , R} where each device has a corresponding

set of subchannels K =
{

1, . . . ,K} with a fixed bandwidth
of bkd,r and these devices are statically deployed, e.g., the
Fog access point (F-AP). There is also a set of IoT devices
D =

{
1, . . . , D} with M =

{
1, . . . ,M} QoS parameters

deployed at the Fog Network, e.g., smart-phones, tablets, cus-
tomer premises equipment (CPE). Unlike static Fog devices,
IoT devices can dynamically join or leave the Fog Network en-
vironment. In addition, the service providers provide different
generic types of services S =

{
1, . . . , S} to the IoT devices in

the Fog Network. The weights of different QoS parameters are
represented as a vector ~wds,m where each entry is the respective
weight of the service type specific QoS parameter. In this
scenario, we assume the Fog Network Coordinator (FNC)
acts as a mediator between the IoT service providers at the
remote cloud and the edge level IoT devices. In this paper,
we consider s ∈ S to represent two major service types or
categories such as enhanced Mobile Broadband (eMBB) and
Ultra-Reliable Low Latency Communications (URLLC) where
there can be many IoT application classes [34]. Additionally,
the weights of different QoS requirements vary from one
service type to another. For example, in eMBB services,

the core priority is to ensure high data rate or throughput
whereas in URLLC the core priority is to ensure acceptable
delay and bit error rate (BER) requirements. An FNC located
in a particular geographic area is able to coordinate with
multiple service types simultaneously. In the network model,
we assume that the IoT devices are capable of executing IoT
applications and the Fog devices are serving as gateways to
reach the IoT service provider in the cloud. Therefore, the IoT
devices associate with the Fog devices in the Fog Network to
communicate with the IoT service or content providers through
the FNC and core network. In such a case, the IoT devices
use the limited network resources provided by the Fog devices
to ensure proper channel coding and to receive the content
from the remote IoT service providers. Both the Fog Network
infrastructures and IoT devices distributively handle the QoS
management tasks including analyzing and prioritizing the
QoS requirements or parameters of the heterogeneous IoT ap-
plications provided by different service providers. Therefore,
the Fog devices perform the context-aware user association for
application specific network resource allocation. In addition,
the Fog devices publish their resource information to the FNC
so that only the subscribed and authorized IoT devices can
localize and access the Fog devices.

1) Bandwidth allocation: Each Fog device r ∈ R can serve
multiple IoT devices d ∈ D based on the available statistical
channel state information (CSI), e.g., signal-to-interference-
plus-noise ratio (SINR), line of sight component [35]. In
addition, we denote by, Ar the set of IoT devices that are
associated with Fog device r ∈ R. Thus, the transmission
capacity between each Fog device r ∈ R with subchannel
k ∈ K and each IoT device d ∈ Ar is,

βkd,r(b
k
d,r) = bkd,r log(1 + ψkd,r). (1)

In (1), bkd,r represents the allocated bandwidth for IoT device
d ∈ Ar that uses subchannel k ∈ K of Fog device r ∈ R
where brmax =

∑
k∈K b

k
d,r is the maximum bandwidth of

the channel of r ∈ R. ψkd,r =
ekd,rκ

k
d,r

σ2+Id,r
is the SINR when

the Fog device r ∈ R allocates its subchannel k ∈ K to
IoT device d ∈ D. Here, ekd,r is the transmission power and
κkd,r is the channel gain between each Fog device r ∈ R
and the associated IoT device d ∈ Ar. The variance of the
Additive white Gaussian noise (AWGN) is denoted as σ2

and Id,r denotes the channel interference. In our scenario,
the interference Id,r =

∑
r′ 6=r e

k
d,r′κ

k
d,r′ , r

′ ∈ R\{r} where
the transmission between Fog device r′ and its respective
IoT device d′ ∈ Ar′ use the same subchannels of βkd,r. The
transmission power and channel gain are denoted as ekd,r′ and
κkd,r′ between Fog device r′ and IoT device d.

2) Job delay: As each Fog device r ∈ R sends job requests
to multiple associated IoT devices d ∈ Ar, the data packet
transmission process at each Fog device is modeled as an
M/M/1 queuing system [36] where the mean arrival traffic
rate is given by λr (packets/sec) at each r ∈ R and the
packet transmission rate or service rate of the queue is µr
(packets/sec) with mean packet size Navg . The aggregated
traffic in each Fog device is, λr =

∑
d∈Ar λd,r.
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The packet transmission times are exponentially distributed
with mean 1

µr
(secs/packet) where we assume the slow fading

channels. For the stability of the system, we consider the
utilization of the queue is λr

µr
< 1. The mean job delay for the

aggregated traffic of d ∈ Ar including the queuing delay and
transmission delay is,

ϕd,r =
Navg

βkd,r(b
k
d,r)

+
λr

(µr − λr)
. (2)

In (2), we consider the transmission delay and queuing delay
as job delay to evaluate the performance of each association
between r ∈ R and d ∈ Ar. Furthermore, the queuing delay
depends on the congestion level of r ∈ R and the transmission
delay depends on the amount of time to send Navg bits into
the link, where the transmission rate is βkd,r(b

k
d,r).

3) Bit Error Rate (BER) calculation: The transmitted data
between the associated IoT device d ∈ Ar and Fog device
r ∈ R could be corrupted even if the interference Id,r is trivial.

The performance of the modulation can be expressed as
βkd,r
bkd,r

(bits/HZ) from (1) which represents the spectral efficiency.
Thus, the BER can be calculated as [37],

νd,r =

 0.2× e
−1.6×

ekd,r
σ+Id,r

log(h)−1 , if
ekd,r

σ+Id,r
≥ Υr

1, otherwise.
(3)

In (3),
ekd,r
σ is the energy per bit to noise power spectral density

ratio with considering interference Id,r, Υr is the threshold for
correct modulation, and h is the given modulation index.

4) QoS aware utility function: Each Fog device r ∈ R
allocates the downlink bandwidth bkd,r to its associated IoT
devices d ∈ Ar. Thus, the QoS aware utility function for the
association between each Fog device r ∈ R and each of the
associated device d ∈ Ar at subchannel k is calculated by the
following QoS based utility function,

Ukd,r(b
k
d,r, w

d
s,m) =

wds,m1
· βkd,r(bkd,r) · wds,m2

(
1− νd,r

)
wds,m3

ϕd,r
.

(4)
The utility function in (4) effectively captures the throughput,
job delay and BER that Fog devices r ∈ R can deliver to the
associated IoT devices d ∈ Ar, given the SINR. In addition,
wds,m1

, wds,m2
, and wds,m3

are the corresponding weight values
of the throughput, BER and job delay for the service type
s ∈ S . Unlike the conventional cellular network, in Fog, the
IoT devices d ∈ D are part of different IoT service platform.
Therefore, the utility function in (4) effectively captures the
service types and weights of individual QoS parameters set by
different IoT service providers. In later section we will provide
an analytical framework for the IoT service providers so that
the service specific weights of the QoS parameters of different
service types can be calculated efficiently.

B. Problem formulation

The goal of the resource allocation in the network is to
maximize the aggregated utility of the joint association and

resource allocation subject to the QoS requirements imposed
by the IoT devices. Therefore, the problem is formulated as,

maximize
Φd,k,δd,r

∑
r∈R

∑
d∈D

∑
k∈K

Φd,kδd,rU
k
d,r(b

k
d,r, w

d
s,m) (5)

s.t. ∑
d∈D

∑
k∈K

Φd,kδd,rb
k
d,r ≤ brmax, r ∈ R (6)

Φd,kδd,rβ
k
d,r(b

k
d,r) ≥ βdsla, ∀d ∈ D, r ∈ R, k ∈ K (7)

Φd,k
∑
m∈M

wds,m ≤ 1, ∀d ∈ D, k ∈ K (8)

ϕd,r(δd,r) ≤ ϕdsla, ∀d ∈ D, r ∈ R (9)

νd,r(δd,r) ≤ νdsla, ∀d ∈ D, r ∈ R (10)

∑
k∈K

Φd,k ≤ 1, ∀d ∈ D (11)∑
d∈D

δd,r ≤ qr, ∀r ∈ R (12)

∑
r∈R

δd,r ≤ 1, ∀d ∈ D. (13)

In general, the constraints in (7)-(10) address the contextual
information for the QoS aware association and allocation
between each Fog device r ∈ R and associated IoT devices
in d ∈ D. In the constraint (11), Φd,k is the binary indicator
variable such that,

Φd,k =

{
1, if d is assigned to subchannel k
0, otherwise. (14)

In (14), Φd,k = 1 indicates that an IoT device d ∈ D is
assigned to the subchannel k of Fog device r ∈ R and
Φd,k = 0 otherwise. In (13), δd,r is the binary indicator
variable defined as follows,

δd,r =

{
1, if d is associated with r
0, otherwise. (15)

In (15), δd,r = 1 indicates that an IoT device d ∈ D
is assigned to the Fog device r; otherwise, δd,r = 0. The
constraint in (12) indicates that each Fog device r can be
associated with a limited number of IoT devices d ∈ D and qr
is the quota value, which is equal to the number of subchannels
of Fog device r. In (13), the constraint indicates each of IoT
device d ∈ D can be associated with only one Fog device
r ∈ R. The first two constraints (7) and (6) address the
network resource allocation for the application running in the
IoT devices. The constraint in (6) is the bandwidth capacity
bkd,r of the associated Fog device r ∈ R when the assigned
subchannel is k ∈ K and brmax is the maximum bandwidth
of the fog devices r ∈ R. In (7), the capacity (throughput)
βkd,r is an allocation vector with feasible allocations based on
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the subchannel bandwidth bkd,r via Fog device r ∈ R while
assigning subchannel k ∈ K, and βdsla is the minimum QoS
requirement imposed by IoT device d ∈ Ar.

In (9) the delay constraint is shown where the job delay is
a function of δd,r, indicating the job delay is calculated once
there is an association between d ∈ D and r ∈ R. The delay
constraint between each Fog device r ∈ R and associated
IoT device d ∈ D is calculated as ϕd,r(δd,r), which is less
than or equal to the maximum delay ϕdsla that a particular
application running at the IoT device d ∈ D can tolerate. The
constraint in (10) accounts for the BER constraint once there is
an association between d ∈ D and r ∈ R. The BER νd,r(δd,r)
of the association δd,r should be less than the maximum
BER νdsla as per the application requirement imposed by each
d ∈ D. In (8), when Φd,k = 1, the summation of the M
weight factors for each QoS parameters under the service type
s ∈ S is not more than 1. Therefore, individual weights of the
QoS parameters (6), (7), (9) and (10) are set for the eMBB
and URLLC service types s ∈ S which should be greater
than or equal to zero. In addition, for any valid allocation
under the QoS constraints in (6)-(13), the objective function
in (5) is effectively maximized for the association between
different IoT devices belonging to either eMBB or URLLC
service types and the corresponding Fog devices where the
weights of individual QoS parameters are set by different
service providers.

The decision problem in (5) can be reduced to a base
problem of 0/1 multiple-knapsack problem [38] with the
corresponding constraints in (6)-(13), which is NP-Complete
[39]. Similar to the 0/1 multiple-knapsack problem, the com-
binatorial nature of the problem in (5) leads to find all the
feasible associations and allocations where the complexity
of the problem is O(2D×R×K) which grows exponentially
depending on the number of IoT devices, Fog devices, and
subchannels in the corresponding sets in order to maximize
the network utility. In fact, there is no known polynomial
algorithm which can tell, given a solution of (5), whether
it is optimal. As a result, we can infer that the decision
problem in (5) belongs to the same category of the problem
of multiple-knapsack problem which is proven to be NP-hard
[40]. Therefore, in the next section we solve the problem in
(5) by adopting the AHP based matching game approach for
resource allocation between the Fog devices in R and IoT
devices in D.

IV. QOS AWARE RESOURCE ALLOCATION VIA AHP AND
MATCHING THEORY

In this section, first we devise an analytical framework using
AHP in order to qualitatively stratify the decision factors (e.g.,
throughput, BER, and delay) followed by learning the local
and global weights for the decision factors and the IoT devices,
respectively. Second, we formulate a matching game to solve
the problem in (5), where the preferences of the players are
created using AHP based qualitative evaluation. Finally, we
apply the “best-fit” resource allocation (RA) strategy with the
proposed matching game to deal with the externalities such

Fig. 2: AHP hierarchy for the candidate IoT devices

TABLE II: Pair-wise comparison scale

Relative importance Description

1 Equally preferred
3 Moderately preferred
5 Strongly preferred
7 Very strongly preferred
9 Absolutely preferred

2, 4, 6, 8 Intermediate preference values between
adjacent scale values

Reciprocals of above factors i if P i,j = i then P j,i =
1

P i,j

as “peer-effects”. The detailed discussion on the AHP and
matching game with externalities is explained later in this
section.

A. Hierarchical Stratification via AHP

In Fig. 2, the multiple criteria decision-making method,
AHP, decomposes the complex QoS management problem into
tractable hierarchical sub-problems.

In level 0, the goal of the AHP is the selection of candidate
IoT devices. Level 1 of the hierarchy is comprised of the
QoS criteria, which are considered as decision factors. The
priorities of the decision factors vary from one service type
to another. Last, the bottom level 2 of the hierarchy evaluates
the alternative candidate IoT devices based on the evaluation
of the decision factors performed in level 1.

The QoS requirements of the IoT devices are considered to
be a QoS matrix Q ∈ Rd×m where each entry qd,m represents
the minimum QoS requirements imposed by d ∈ D. The
pairwise comparison of the candidate IoT devices is based
on M QoS criteria or decision factors. Therefore, each of
the factors has a weight as per the relative importance to
the candidate selection problem. We assume that subjective
judgments as per Table II are based on the decision factors
and enforced by the service provider considering the service
specific QoS requirements. There are several judgment scales
that have been proposed for different decision problems [41].
However, in our proposed decision making problem, we use
the linear scale since this is considered as the best scale to
represent the weight rations between the decision factors [42].
Based on our proposed multi-criteria decision problem, the
AHP model can be explained through the following three
steps.
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Algorithm 1: Pair-wise comparison matrix creation at
FNC
Input: D, S, P ∈ Rm×m, Q ∈ Rd×m, ~tr, ρ← 0.1
Result: W r ∈ Rd×m

1 Initialize: P̄ ∈ Rm×m, m̃,
2 repeat
3 foreach d ∈ D do
4 while j 6= m do
5 m̃[j]←

∑m
i=1 P [i][j]

6 foreach i in the jth column of P do
7 P̄ [i][j]← P [i][j]

m̃[j]

8 j ← j + 1
9 ~wds,m ← 1

m

∑m
j

∑m
i P̄ [i][j]

10 Update CR using (16) and (17)
11 W r ←W r ∪ ~wds,m
12 until CR ≤ ρ;

1) Step 1: Pairwise comparison for Level 1: Each d ∈ D
corresponds to a pairwise comparison matrix P ∈ Rm×m

which is also a reciprocal matrix based on the subjective
judgment of the QoS parameters or decision factors provided
by different service providers considering different service
types. The IoT service provider uses the pair-wise compar-
ison scale to create the pair-wise comparison matrix P as
shown in Table II, and then sends this matrix to the FNC
for further qualitative analysis. Each entry mij in the pair-
wise attribute comparison matrix P represents the relative
importance between the QoS attributes i and j, corresponding
to the row and column respectively (lines 3-5 in Alg. 1). Then,
P is column-wise normalized as P̄ ∈ Rm×m and each entry
of P̄ represents the normalized relative weight (lines 6-8 in
Alg. 1). Afterwards, the weight vector ~wds,m is calculated by
averaging the rows of P̄ , where ~wds,m =

{
m̄1, m̄2, m̄3

}T
={

mdelay, mBER, mdatarate

}T
, ∀d ∈ D, ∀s ∈ S

(
line 11 in

Alg.1
)
. The weight vector ~wds,m is the normalized principle

eigen vector, which represents the local weights of each QoS
attribute in level 1 and is then added to the local weight
matrix W r ∈ Rd×m of r ∈ R (line 9 in Alg. 1). Since
the comparison matrix P is based on the relative importance
among the QoS criteria or decision factors, the logic of
preference should satisfy the transitive property. Therefore, the
consistency of matrix P is checked through the consistency
index CI [43], which represents the deviation of consistency
as (line 12 in Alg. 1),

CI =
λmax − n
n− 1

. (16)

In (16), n is the dimension of the square matrix P , and
λmax is the principle eigenvalue of P , which is calculated
through the summation of products between each entry of
the weight vector ~wrd and the sum of the columns of the
pair-wise attribute comparison matrix P . If the value of CI
is relatively large, the inconsistency of the preferences in P
becomes more significant [44]. By using the consistency index

Algorithm 2: Global weight vector at each Fog devices

Input: D, M, Q ∈ Rd×m, W r ∈ Rd×m
Result: ~wrg

1 Initialize: Q̄ ∈ Rd×m, A ∈ Rd×m
2 Normalize Q as Q̄
3 for i ∈ D do
4 foreach jth factor in the ith candidate in Q̄ do
5 A[i][j] = W r[i][j] · Q̄[i][j]

6 ~wrg ←
∑D
i=1

∑M
j=1 A[i][j]

CI , the consistency ratio CR is calculated as,

CR =
CI

RI
. (17)

In (17), RI is the Random Consistency Index (RCI) and the
inconsistency of the matrix is acceptable if CR is less than
or equal to ρ = 0.1, otherwise the subjective judgment is
revised for the consistency by modifying P (line 10 in Alg.
1). Finally the FNC disseminates the context information in
step 1, including W r and Q ∈ Rd×m for the corresponding
Fog devices in R.

2) Step 2: Pair-wise comparison in level 2: In level 2, r ∈
R evaluates the candidate IoT devices d ∈ D under different
decision factors m ∈M of the service type s ∈ S to compute
the alternative candidate matrix A ∈ Rd×m in Alg. 2. In the
alternative matrix A, each row represents the IoT devices d ∈
D and the columns are the QoS parameters m ∈M for a given
service type s ∈ S. Each entry in the QoS matrix Q is row and
column normalized as Q̄ (line 2 in Alg. 2). After that, each
candidate IoT device in Q̄ is multiplied by its corresponding
weight value in the parent local vector ~wds,m from the local
weight matrix W r (lines 3-5 in Alg. 2).

3) Step 3: Weight based profiling in level 0: At this step,
the global weight vector ~wrg =

{
w1, w2, wd

}T
is calculated

through Alg. 2, where it takes the alternative matrix A from
step 2 and the local weight vector ~wds,m ∈ W r from step
1 as the input to generate the global weight vector ~wrg for
r ∈ R. Each entry in Ar is multiplied by its corresponding
parent in W r in order to generate the global weight vector
~wrg for r ∈ R

(
line 6 in Alg. 2

)
. The global weight vector ~wrg

represents the weights used for ranking the IoT devices based
on the QoS evaluation in level 1 and level 2 of the AHP.

B. Resource Allocation via Matching

In this stage, we find a stable matching or association be-
tween two sets D andR considering the individual preferences
of the players (IoT and Fog devices) in order to perform the
resource allocation (RA). For such an association, we model
our problem as the “one-to-many” matching game, which
solves the classical “College Admissions” problem [45]. In
addition, the pairwise comparison matrix and the global weight
vector from AHP are used as input parameters to create the
preference profile of players in the “one-to-many” matching
game.
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1) Matching game formulation: In our formulation, we
define “College” as the Fog devices with quota qr ≥ 1 and
“Student” as the IoT devices with quota qd = 1, where
each Fog device can be associated or matched with IoT
devices up to their quota limits. However, in the proposed
matching game, we introduce a dynamic quota in which Fog
device r can allocate the network resource (i.e., bandwidth)
of different portion sizes to the associated IoT devices in
d ∈ Ar. The portion sizes of the allocations are based on
the QoS requirements of d ∈ D and sustained until the QoS
requirements are not violated. Therefore, The outcome of the
matching game is a matching function δ that mutually assigns
each player r ∈ R and d ∈ D under the following conditions
of the matching δ : D ∪R =⇒ 2D∪R such that,
(1) δ(r) ⊆ R such that |δ(r)| ≤ qr, ∀r ∈ R
(2) δ(d) ⊆ D such that |δ(d)| ≤ 1, ∀d ∈ D
(3) If r ∈ δ(d) then δ(r) = Ar,∀r ∈ R
(4) d ∈ δ(r) if and only if δ(d) = {r}, ∀d ∈ D and ∀r ∈ R.

Here, qr is the maximum resource capacity of r ∈ R and
each d ∈ D can associate with exactly one r ∈ R as per (12)
and (13) in problem (5) where |δ(·)| is the cardinality of the
matching instance δ(·). In addition, if there is a matching δ
between IoT device d and Fog device r, the Fog device r adds
the matching δ to the accepted list Ar.

2) Preference Profile of Players: The global weight vector
~wrg and the corresponding local weight vectors ~wrd ∈ W r,
∀d ∈ D from the AHP are the parameters used to create the
preference lists for the players in the matching game. The
preference relation between the players in the preferences lists
pd,∀d ∈ D and pr,∀r ∈ R hold the transitive property within
the matching framework as defined in Definition 1.

Definition 1. A matching game is defined using two sets of
players R and D where the corresponding transitive prefer-
ence relations �r, and �d of each player in r ∈ R, and
d ∈ D, respectively, are used to build preferences over one
another.

In a matching game, the preference list of each r ∈ R is
denoted as pr and the rank or preference �r of the IoT devices
in pr is based on the respective weight values in ~wrg , given as,

d �r d′ ⇔ w > w′where (w,w′) ∈ ~wrg and d 6= d′,

where Fog device r prefers IoT device d more than IoT device
d′ in pr, as the weight value w of IoT device d is higher than
the weight value w′ of IoT device d′.

Likewise, each IoT device d ∈ D receives the respective
local weight vectors ~wrd,∀d ∈ D from the Fog devices r ∈ R
and measures the channel condition using (1) and (3) so that
d ∈ D can calculate the expected utility as,

Ūd,r = wds,m1
· βd,r(bd,r) · wds,m2

(
1− νd,r

)
. (18)

In (18), the expected utility function captures the service type
based QoS requirements βd,r and νd,r with the respective
QoS parameters weight values wds,m1

and wds,m2
. The weight

values are calculated by the Fog devices in r ∈ R according
to (6)-(8) and (10) in problem (5). The expected utility also

reflects the achievable degree of satisfaction under an error-
free communication based on the statistical channel state
information (CSI) between the corresponding d ∈ D and
r ∈ R. Therefore, in pd, the preference relation �d of d with
the Fog devices r ∈ R can be represented as,

r �d r′ ⇔ Ūd,r > Ūd,r′ , r 6= r′,

where IoT device d prefers Fog device r more than the Fog
device r′ in pd, as the expected utility Ūd,r of the Fog device
r is higher than the expected utility Ūd,r′ of the Fog device
r′.

3) Externalities in Matching: In the case of a “one-to-
many” maching game, the existing matchings or associations
δd,r become unstable due to the externalities or environmental
variations. Thus, it is not possible to apply the “Deffered
Acceptance” algorithm directly to guarantee stable matching
for resource allocation without considering externalities. In
the proposed matching game, we consider the performance
of the matching instances which are affected by additional
externalities such as the average job delay in (9) and BER
in (10) which depend on the corresponding congestion level
on each r ∈ R and channel interference. Therefore, in
the proposed one-to-many stable matching for the resource
allocation algorithm, we consider the additional externalities
as “peer-effects” where the stability and performance of a
matching between a Fog device r and an IoT device d depend
on not only the specific matching instance δd,r but also the
influence of other neighboring matching instances δd′,r of
the same Fog device r. Based on the current scenario, we
formulate the definition of a blocking pair in Definition 2,

Definition 2. A blocking pair of a matching {d′, r} ∈ δd′,r is
a pair of players {d, r} /∈ δd′,r such that:
a) β̃r(b̃r) ≥ βdsla, d �r ∅ and r �d δ′(r′)
b) β̃r(b̃r) < βdsla, β̃r +

∑
d′∈Ar βd′,r(bd′,r) ≥ βdsla, {d} �r

{d′} and r �d δ′(r′)
c) Ud,r < Ūd,r, {d} �r {d′} and r �d δ′(r′).

where �d and �r indicate the preference relation between
the matching instances δ(·) and δ′(·), respectively. In addition,
δd′,r is the matching between IoT device d′ and Fog device
r and δ′d,r′ is the matching between IoT device d and Fog
device r′, where the matching instance δd,r is the blocking
pair. In condition (a), if Fog device r has enough residual
quota β̃r(b̃r) = βrmax(brmax) −

∑
d′∈Ar βd′,r(bd′,r) and IoT

device d prefers Fog device r than its current association with
Fog device r′, r accepts the proposal from d. In condition
(b), the residual quota β̃r(b̃r) of each Fog device r ∈ R is
fulfilled when β̃r(b̃r) < βdsla for any requesting IoT device
d ∈ pr. Thus, Fog device r rejects the least preferred IoT
device d′ ∈ Ar in order to admit the proposal from IoT device
d. Both the conditions (a) and (b) in our formulation introduce
the challenge of dynamic quota in the game which is similar
to [46]. However, in condition (c), we consider an additional
challenge of externalities in the matching game where the
matching utility Ud,r′ between IoT device d and Fog device
r′ is less than the expected utility Ūd,r′ which indicates the
degradation of the matching performance due to externalities
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in (2) and (3). In such case, both IoT device d and Fog device r
deviate from their current associations and create the blocking
pair.

4) Proposed Matching Algorithm: At each iteration l, each
IoT device d ∈ D starts making proposals to the most
preferred Fog device r ∈ R that appears in its preference
list pd (lines 3-4 in Alg. 3). After receiving the proposal from
IoT device d, Fog device r holds the proposal if it has not
received any other proposals (line 6 in Alg. 3). If IoT device
d previously matched with any other Fog device r′ ∈ pd\{r},
d compares the utility from prior the matching δd,r′ , Ud,r′
with the expected matching utility from δd,r, Ūd,r (line 7 in
Alg. 3). Since the utility function in (18) effectively captures
the performance parameters (1) and (3) of the matching, the
utility function represents the overall performance gain of
any matching instances. Therefore, if the expected utility of
matching δd,r is higher than the prior utility of matching δd,r′ ,
IoT device d puts the matching δd,r′ in its rejection list Ld
and a new matching instance δd,r is created (lines 8-9 in Alg.
3). Consequently, Fog device r′ also removes the matching
δd,r′ from its accepted list Ar′ and Fog device r adds the
matching δd,r to its accepted list Ar (lines 10-11 in Alg. 3).
Otherwise, IoT device d puts Fog device r in its rejected list
Ld and continues making proposals as per the preference order
of its preference list pd (line 14 in Alg. 3). If Fog device r
has no residual quota to support the new proposal from IoT
device d, Fog device r first checks the accepted list Ar for any
least preferred existing matching instance (line 17 in Alg. 3).
Second, if there exists any least preferred matching δd′,r, Fog
device r rejects and removes the matching δd′,r from Ar to
accommodate the more preferred matching δd,r (lines 19-23
in Alg. 3). In the case of any mutual rejection between two
players, the corresponding preference lists and the residual
capacity of Fog device r ∈ R are updated accordingly (lines
12, 15, and 23 in Alg. 3).

In the proposed matching game, we have applied the “best-
fit” resource allocation strategy to deal with the externalities,
ensuring the stability of the matching game. First, Fog device
r calculates the residual quota β̃r after temporarily allocating
the network resources to the IoT devices in the accepted list
Ar (line 2 in Alg. 4). If there exists any δ(r) ∈ Ar that
violates the QoS conditions given in (6), (7), (9) and (10),
the utility of that matching Ud,r also degrades. Therefore,
Fog device r sequentially finds the least preferred IoT device
d′ ∈ pr other than IoT device d ∈ pr\{d′} and creates
a temporary allocation βrtemp(b

r
temp) (lines 3-5 in Alg. 4).

Second, if the temporary allocation can accommodate IoT
device d, Fog device r rejects the proposal from the least
preferred IoT device d′ and allocates the network resource
to the more preferred IoT device d (lines 6-7 in Alg. 4).
However, if IoT device d is the least preferred in Ar, Fog
device r breaks the association with d, and the corresponding
preference lists and rejected lists are updated (line 9 in Alg.
4). The algorithm converges and becomes stable when the
matching of two consecutive iterations l remains unchanged
(line 22 in Alg. 3).

Theorem 1. Alg. 3 produces stable association.

Algorithm 3: Matching algorithm with externalities
Input: D, R, pd, pr,W r

1 Initialize: Ar = {∅} ;Ld = {∅} ; l← 0
Matching:

2 repeat
3 l← l + 1

4 Each d ∈ D proposes the most preferred r ∈ p(l)
d and

r /∈ L(l)
d

5 while p(l)
d 6= ∅ and ∃d ∈ p(l)

r do
6 if d �r ∅ and β̃(l)

r (b̃r) ≥ βdsla then
7 if Ūd,r > Ud,r′ then
8 L(l)

d ← L
(l)
d ∪ {δ(d)(l−1)}

9 δ(r)(l) ← d

10 A(l)
r′ ← A

(l)
r′ \{δ(r′)(l)}

11 A(l)
r ← A(l)

r ∪ {δ(r)(l)}
12 Update p(l)

r′ , p(l)
d , β̃(l)

r (b̃r)
13 else
14 L(l)

d ← L
(l)
d ∪ {δ(d)(l)}

15 Update p(l)
r , p(l)

d , β̃(l)
r (b̃r)

16 else
17 for d′ ∈ A(l)

r do
18 if (d, δ(l)) �r (d′, δ(l−1)) then
19 L(l)

d′ ← L
(l)
d′ ∪ {δ(d′)(l)}

20 δ(r)(l) ← d

21 A(l)
r ← A(l)

r \{δ(r)(l−1)}
22 A(l)

r ← A(l)
r ∪ {δ(r)(l)};

23 Update p(l)
r , p(l)

d′ , β̃(l)
r (b̃r)

24 else
25 L(l)

d ← L
(l)
d ∪ {δ(d)(l)}

26 Update p(l)
r , p(l)

d , β̃(l)
r (b̃r)

27 until δ(l)
d,r 6= δ

(l+1)
d,r ;

28 Calculate matching utilities based on A(l)
r using (1), (2),

(3), (4) and W r

29 Resource Allocation:
30 Apply Alg. 4: alloc(R, A(l)

r , L(l)
d , p(l)

r , p(l)
d )

31 Output: δ(l)
d,r

Proof. Please see the technical report in [47] for more detailed
discussion about the proof of convergence and an example
scenario of the user association and resource allocation using
AHP and matching game.

The complexity of Alg. 3 is quantified by the complexity
of building the preference profiles by both Fog devices and
IoT devices which are inputs for Alg. 3. For each Fog
device, the complexity of building the preference profile using
standard sorting algorithm is O(R log (R)) and similarly the
complexity of building the preference profile of all the IoT
devices is O(D log (D)). Therefore, the input of Alg. 3 is∑
d∈D |ρd| +

∑
r∈R |ρr| = 2DR where |ρd| and |ρr| are the

length of the respective preference profiles of IoT device and
Fog device. As Alg. 3 terminates after a finite number of
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Algorithm 4: Best Fit RA: alloc(R, Ar, Ld, pr, pd)
Input: R, Ar, Ld, pr , pd
Result: Ar, Ld, pr , pd

1 Initialize: βrtemp(brtemp) = {∅}
2 β̃r(b̃r)← βrmax(brmax)−

∑
d∈Ar βd,r(bd,r)

3 while ∃d ∈ Ar and Ud,r < Ūd,r do
4 if (d, δ(r)) �r (d′, δ(r)) ∈ Ar then
5 βrtemp(b

r
temp)← β̃r(b̃r) + βd′,r(bd′,r)

6 if βrtemp(brtemp) ≥ βdsla then
7 Update Ld′ , pd′ , Ar, pr, β̃r(b̃r)
8 else
9 Update Ld, pd, Ar, pr, β̃r(b̃r)

iterations, it can be seen that the worst case time complexity
of Alg. 3 is linear in the size of the preference profiles with
O(η) = O(DR) where D and R are the numbers of IoT
devices and Fog devices respectively. In case of Alg. 4, the
standard best-fit algorithm is used where the time complexity
is O(DR log (DR)). Therefore, the proposed approach is
suitable for practical implementation.

V. SIMULATION AND ANALYSIS

A. Simulation Setting

TABLE III: Simulation Settings

Simulation Parameters Values
No. of Fog devices 10
No. of IoT devices 50

Radius of Fog device 250 (m)
Radius of FNC 800 (m)

Maximum Bandwidth 20 MHz
Thermal noise 175 dBm/Hz

For the simulation, we consider a network composed on 10
Fog devices and 50 IoT devices. The transmit power of each
Fog device is 33 dBm and the path loss L(∆d,r) = 37+∆d,r is
calculated over the distance ∆d,r between the IoT devices and
Fog devices. We assume lognormal shadowing with standard
deviation of 4 dB for the Fog devices. The minimum required
SINR for each IoT device is 9.56 dB and the power density
of thermal noise power is 175 dBm/Hz. In the simulation, the
typical QoS requirements of the IoT devices are set based
on Table I where the constant packet size is 1500 bytes.
Using the simulation, we compare our proposed algorithm
with the two well-known baseline solutions which are deferred
acceptance (DA) algorithm [48] and analytic hierarchy process
(AHP) [49]. The DA approach considers the distance ∆d,r

between the IoT devices and Fog devices in order to create
the preference list. The AHP based approach considers the
global weights for not only sorting the preference list for IoT
devices and Fog devices, but also accepts the requests until
the quota requirements are fulfilled. The main parameters for
the simulation are provided in Table III.

B. Simulation Results

Fig. 3 depicts the performance gap and average utility of
the associations, where the number of Fog device is 3 and the
number of IoT device is 10. The complexity of the exhaustive
search algorithm is growing exponentially (i.e., O(2D×R×K))
where the optimal solution is one of the possible combinations
of the subsets of the sets D, R and K. Therefore, we consider
a small network for comparing our proposed approach with
the optimal solution. The proposed AHP based matching
approach produces sub-optimal results but in case of real-
time- IoT services, the proposed approach converges much
faster than the exhaustive search based resource allocation.
Apart from that, in the proposed AHP based matching ap-
proach, the decision of the association between IoT and Fog
devices is QoS aware and thus the average utility of the
association between IoT and Fog devices increases as the
network size increases. Moreover, the performance gaps in
terms of average utility between the proposed AHP based
matching with externalities, DA, and AHP are correspondingly
up to 23.32%, 39.1319%, and 69.2315% when the network
size is |D| = 10. In Fig. 3, we observe that the average
utilities of all the methods are monotonically increasing up
to a network size of |D| = 8. However, the performance gap
increases slightly after the network size |D| = 8 because
of the impact of interference during the association. Since
the final outcomes of the exhaustive search based solution
are generated after iterating over all the possible association
and allocation combinations, the optimal average utilities after
|D| = 8 experience comparatively less interference than
the sub-optimal average utilities of the proposed approach.
Nonetheless, the proposed algorithm converges to a stable
solution even though there is noticeable interference which
degrades performance gain compared to the optimal solution.
In fact, none of the QoS requirements is violated due to the
interference effect in the proposed approach while achieving
the desired matching stability. On the other hand, we observe
a significant performance loss in the DA and AHP based
approaches due to the increased interference level compared to
the optimal solution which further solidifies the effectiveness
of the proposed approach. Besides. the AHP approach only
defines the preference lists of the Fog devices, and thus is
unable to improve the performance of the IoT devices. On the
other hand, the deffered acceptance (DA) approach defines
the preference order for both the IoT and Fog devices based
on the distance. Therefore, the number of requests from the
IoT devices to the nearby Fog devices increases when the
area is densely overloaded with the IoT devices. Overall. the
utility gain of the proposed solution is significantly higher
than those of the deferred acceptance (DA) and AHP based
approach due to the efficiency of the proposed solution in
handling the “peer-effects”, which provides a higher number
of associations. Fig. 3 also shows that the proposed AHP
based QoS aware matching approach provides joint decision
making for the associations with enhanced SINRs. Therefore,
the average throughput of the associations increases and a
smaller BER is achieved with lower delay than that of the
DA and AHP which are the context unaware approaches.
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Fig. 3: Average utility comparison between the optimal and the
proposed method, R = 3, D = 10

Fig. 4 shows the evaluation of the average throughput of the
associations in the proposed AHP based matching approach,
DA, and AHP. The throughput of the associations are improved
significantly in the proposed AHP based matching approach
compared to the other context-unaware methods. The average
throughput between the proposed approach and the DA ap-
proach is relatively close at the beginning when the network
size is small (i.e., |D| = 10). Since the association between the
IoT devices and Fog devices in the DA approach depends on
the RSSI, each IoT device tends to become associated with the
closest Fog device. As a result, as the network size increases,
the proposed approach outperforms the DA approach due
to effective load balancing whereas the DA approach needs
to deal with the large unequal loads. Apart from that, the
QoS unaware methods (i.e., DA and AHP) can not guarantee
stability in the association and thus are unable to improve
the user’s QoS satisfaction through the achievable throughput.
The results also demonstrate that the “best-fit” algorithm for
handling the “peer-effects” in the proposed matching approach
provides better throughput than that of the DA algorithm,
which is unable to address the “peer-effects” during resource
allocation. As a result, we also observe the throughput gain
between the proposed approach and the DA as well as AHP
approaches correspondingly up to 28.89% and 55.56%. This
result clearly confirms the usefulness of the proposed approach
in terms of the significant performance gain.

Fig. 5 demonstrates the utilization of the Fog devices or
network resources under the proposed approach and DA algo-
rithm. As the number of IoT device increases, in the proposed
approach, the utilization of the Fog devices or the network
resources increases significantly due to the increased number
of associations per Fog devices compared to the DA approach.
However, in Fig. 5, we observe that the effect of externalities
is not significant up to |D| = 20. Moreover, the performance
gap increases between the proposed approach and DA when
|D| = 25 as the DA approach is unable to handle the “peer-
effects” and is thus unstable. Due to this reason, the number
of rejections by the Fog devices increases, which negatively
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Fig. 5: Average network utilization between different methods,
R = 10, D = 50

impacts the network resource efficiency by 15.7143% when
the network size reaches |D| = 50.

The bandwidth is limited in each of the Fog devices and
therefore, the bandwidth should be utilized efficiently. Fig. 6
illustrates the bandwidth efficiency of each of the Fog devices
for a varying number of IoT devices in the network. The
proposed AHP based matching approach efficiently utilizes
the channel capacity of the Fog devices as the number of
simultaneous associated IoT devices increases. The average
bandwidth efficiency between the proposed AHP based match-
ing game and the DA approach is fairly similar till the network
size is |D| = 20. However, the bandwidth efficiency increases
the most when the network size is medium and the density is
from |D| = 25 to |D| = 35. As the network size grows (i.e.,
|D| > 35), the bandwidth efficiency gap between the proposed
AHP based matching and DA approach slightly decreases
due to increasing interference level. As a result, the number
of allocation per Fog device slightly decreases. However,
the bandwidth efficiency gap is still significant between the
proposed approach and the DA approach. One of the reasons



0090-6778 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2870888, IEEE
Transactions on Communications

IEEE TRANSACTIONS ON COMMUNICATIONS 11

0 20 40
0

0.1

0.2

Number of IoT devices

A
v
e

ra
g

e
 b

a
n
d
w

id
th

 e
ff

ic
ie

n
c
y
 

DA

Proposed
AHP based
Matching
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R = 10, D = 50
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Fig. 7: Comparison of average bit error rate (BER) between
different methods, R = 10, D = 50

behind this is that the proposed “best-fit” resource allocation
scheme demonstrates the multi-user diversity [50] where the
Fog devices are able to choose relatively high quality of
channels so that the IoT devices can receive data more reliably.

In Fig. 7, the average bit error rate of the proposed approach
is smaller than the DA and AHP based approach. This phe-
nomenon is expected, as in the proposed AHP based matching
approach, the associations have a higher SINR gain when
the network size is small, (|D| = 20) and the externalities
is still not significant during the allocation. With increasing
number of IoT devices joining the network, the bit error rate
difference between the DA and AHP approaches becomes
indistinguishable. On the other hand, the received bit error rate
after applying the proposed AHP based matching algorithm is
increasing but compared to other two algorithms the increasing
rate still complies with the QoS constraints and which shows
the efficiency of handling the externalities.

From Fig. 8, we observe that the average job delay increases
in the DA algorithm and AHP approach than the proposed
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Fig. 8: Average job delay comparison between different methods,
R = 10, D = 50

AHP based matching. The reason behind this increased delay
is due to the congestion level at each Fog devices in the
DA algorithm and AHP approach as the network size is
|D| > 20. Since the proposed AHP based matching game
approach applies the “best-fit” allocation policy, the issue of
dealing with the ‘externalities’ during the network resource
allocation is properly handled which ensures necessary load
balancing. As a result, the congestion level is much lower in
the proposed approach that those of the other two methods. In
Fig. 8, it is also observed that the received BER after applying
the DA approach is slightly higher than that of the AHP. The
reason behind this is that, in the AHP based approach, the
overloaded Fog devices tend to reject the IoT devices after
there is no available network resource in order to converge to
a stable solution where the decision of resource allocation is
one sided. On the contrary, in the DA approach, the decision
is two-sided; thus, once an IoT device gets rejected by the
corresponding Fog device, the IoT device still has the option
to propose to its next preferred Fog device in the respective
preference list. As a result, the number of allocations is
comparatively higher in DA approach than that of the AHP
approach. However, the DA approach cannot conclusively
converge to an allocation solution and also unable to solve
the issue of “peer-effects” which is necessary to provide load-
balancing to avoid congestion at the Fog devices. In fact,
the Fog devices remain over-loaded in the DA approach than
that of the proposed approach. The reason behind is that, for
any new allocation at the Fog devices, the proposed approach
always checks the performance of the current allocations that
have been made to the IoT devices through “best-fit” algorithm
before accepting new allocation. As a result, the congestion
level is significantly lower in the proposed approach than that
of the DA approach that leads to incurring lower job delay for
the proposed AHP based matching game. In addition, in the
proposed approach, the delay constraint of the IoT devices is
tolerable and does not violate the job delay QoS requirement
of the IoT devices. On the other hand, the performance gain
of the associations through the DA and AHP approach reduces
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Fig. 10: Normalized average utility of the associations for D = 50

due to the violation of the job delay requirement.

Fig. 9 depicts the convergence (Order 1 convergence) of the
proposed AHP based matching approach and DA algorithm.
Since the proposed approach is an iterative algorithm, under
the “peer-effects”, the solutions generated by the proposed
algorithm converge to a desired solution with slightly larger
number of iterations than that of the DA algorithm. Therefore,
the convergence rate of the proposed AHP based matching is
slightly slower than that of the DA algorithm (as the number
of IoT devices is larger) and the “best-fit” algorithm is imple-
mented to find the stable allocation. However, the proposed
algorithm guarantees both the convergence and stability in
spite of the “peer-effects” whereas the DA algorithm cannot
guarantee the desired stability.

Fig. 10 shows the control chart of the utility distribution
of the associations in the proposed AHP based matching
approach, where the utility is well-balanced, and there is no
violation, and the normalized average utility of the associations
at each iterations is close to the central line. At each iteration,
the IoT device density at each Fog device increases and when

the IoT device density is much lower, the performance gain in
terms of utility is quite higher than the average line and tends
to upper control limit (UCL). As the IoT device density in
the network increases (i.e., |D| > 35), the normalized average
utility per Fog device slimly tends toward lower control limit
(LCL) which is expected due to externalities. However, none
of the distributions violates the upper (UCL) and lower control
limit (LCL) even though the negative effect of externalities at
higher IoT device density.

VI. SUMMARY

In this paper, we have focused on ensuring the quality of ser-
vice for end users by efficiently allocating the limited network
resources to the heterogeneous IoT applications. Therefore, we
have proposed an analytic hierarchy process based matching
approach for self-organizing, and distributed user association
and resource allocation that are scalable and well applicable
to the dense Fog environment. Unlike conventional resource
allocation schemes for IoT, we have efficiently mapped the
network resources to the IoT applications by considering
analytic hierarchy process based analytics, resource demand,
and application type of the QoS parameters for the IoT
applications. We have also provided a real-world example to
demonstrate the proposed approach for user association and
resource allocation in the Fog environment. In addition, we
have investigated the effects of externalities or environmental
variations on the outcomes of the matching game through
extensive analysis. The simulation results show that, the pro-
posed approach is able to address externalities in the matching
game using the “best-fit” resource allocation strategy, and we
have observed significant performance gains compared to the
other conventional resource allocation schemes. We have also
validated the stability, complexity and, convergence of the
proposed user association and resource allocation algorithm.
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