
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

1

Computing with Nearby Mobile Devices: a Work
Sharing Algorithm for Mobile Edge-Clouds

Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu

F

Abstract—As mobile devices evolve to be powerful and pervasive com-
puting tools, their usage also continues to increase rapidly. However,
mobile device users frequently experience problems when running in-
tensive applications on the device itself, or offloading to remote clouds,
due to resource shortage and connectivity issues. Ironically, most users’
environments are saturated with devices with significant computational
resources. This paper argues that nearby mobile devices can efficiently
be utilised as a crowd-powered resource cloud to complement the
remote clouds. Node heterogeneity, unknown worker capability, and
dynamism are identified as essential challenges to be addressed when
scheduling work among nearby mobile devices. We present a work-
sharing model, called Honeybee, using an adaptation of the well-known
work stealing method to load balance independent jobs among hetero-
geneous mobile nodes, able to accommodate nodes randomly leaving
and joining the system. The overall strategy of Honeybee is to focus on
short-term goals, taking advantage of opportunities as they arise, based
on the concepts of proactive workers and opportunistic delegator. We
evaluate our model using a prototype framework built using Android and
implement two applications. We report speedups of up to 4 with seven
devices and energy savings up to 71% with eight devices.

Index Terms—mobile edge-clouds, crowdsourcing, mobile crowd com-
puting, offloading

1 INTRODUCTION

Todays environments are becoming embedded with mobile
devices with augmented capabilities, equipped with various
sensors, wireless connectivity as well as limited computa-
tional resources. Whether we are on the move, on a train, or
at an airport, in a shopping centre or on a bus, a plethora of
mobile devices surround us every day [47], thus creating a
resource-saturated ecosystem of machine and human intel-
ligence. However, beyond some traditional web-based ap-
plications, current technology does not facilitate exploiting
this resource rich space of machine and human resources.
Collaboration among such smart mobile devices can pave
the way for greater computing opportunities [54], not just
by by creating crowd-sourced computing opportunities [29]
needing a human element, but also by solving the resource
limitation problem inherent to mobile devices. While there
are research projects in areas such as mobile grid computing
where mobile work sharing is centrally coordinated by a

This work was supported in part by the La Trobe University Postgraduate
Writing-up Award
N. Fernando was with La Trobe University, Australia and now works at
Swinburne University of Technology, Australia (e-mail: niro.ucsc@gmail.com)
S.W. Loke and W. Rahayu are with La Trobe University.

remote server (HTC power to give1) and crowd-powered
systems using mobile devices (Kamino2, Parko3) a gap exists
for supporting collective resource sharing without relying
on a remote entity for connectivity and coordination. How-
ever such mobile crowds (also referred to as mobile edge-
clouds [20]) are not meant to replace the remote cloud
computing model, but to complement it as given below:

- As an alternative resource cloud in environments where
connectivity to remote clouds is minimal.

- To decrease the strain on the network.
- To utilise machine resources of idle mobile devices [55].
- To exploit mobile devices’ sensor capabilities which

has enabled the mobile crowdsensing paradigm [27]. A
resource cloud capable of such multi-modality sensing
can enable innovative applications.

- As mobile devices are usually accompanied by users,
they also possess an element of human intelligence [27]
which can be leveraged to solve issues that require
human intervention, such as qualitative classification.

A mobile crowd can be viewed as a specialized form of a
mobile cloud which, in turn, can be viewed from two main
perspectives:

- migrating the computation and storage in mobile de-
vices to resource-rich centralized remote servers, and

- leveraging the computational capabilities of the mo-
bile devices by having them as resource nodes, as
been adopted in research such as the Mobile Device
Cloud [21], [46], Hyrax [42], Mobile Edge-Clouds [20],
[2], [28], [6], MClouds [45], MMPI [19], Virtual cloud
computing for mobile devices [31], and in [55].

Fig. 1: Classifications of Cloud Computing subsets

Both of these views have the same objective of mov-
ing computation and/or storage away from the resource-

1. http://www.htc.com/us/go/power-to-give/
2. http://www.gokamino.com/
3. http://www.parko.co.il/

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

2

constrained mobile device to an external entity. As illus-
trated in Figure 1, the difference lies in the nature of external
resource providers used to augment the computing potential
of mobile devices. The focus of this paper is on mobile
crowd (or edge-cloud). In our view, the human user of a
mobile device is also a resource, which adds an element of
crowd computing [48] to the mobile cloud as well. Therefore,
we refer to this specialized mobile cloud as the Mobile Crowd.

There are several unique features that differentiate mo-
bile crowd environments from a typical grid/distributed
computing cluster, such as less computation power and
limited energy on nodes, node mobility resulting in frequent
disconnections, and node heterogeneity [22]. Hence, solu-
tions from grid/distributed computing cannot be used as
they are, and need to be adapted to suit the requirements of
mobile crowd environments.

This paper presents the Honeybee model, that supports
P2P work sharing among dynamic mobile nodes. As proof
of concept we present the Honeybee API, a programming
framework for developing mobile crowd computing appli-
cations. We build on previous work where we initially in-
vestigated static job farming among a heterogeneous group
of mobile devices in [25], which was followed by a more self
adaptive approach in [22] using the ‘work stealing’ method
[8], and in [23] where three different mobile crowdsourcing
applications were implemented and evaluated. The progress
of our research on work sharing for mobile edge-clouds is
illustrated in Table 1.

TABLE 1: Evolution of the Honeybee model for computing
with nearby mobile devices

Phase I Phase II Phase III
Simple work
farming on
Bluetooth [25]

• connect to
workers via
Bluetooth

• distribute
jobs equally

• no
load-balancing

Work stealing on
Bluetooth [22], [23]

• connect to workers
via Bluetooth

• distribute jobs
equally

• load-balancing via
work stealing after
initial job
distribution

Enhanced work stealing
on Wi-Fi Direct: current
paper • connect to
workers via Wi-Fi Direct

• work stealing commences
without initial equal job
distribution

• fault-tolerance methods
• periodic resource

discovery

In this phase, we have improved the work stealing
algorithm of phase II to address the bottlenecks in the trans-
mission of large job data by optimising the job distribution
strategy and using Wi-Fi Direct. Phase III is also able to
handle random disconnections and opportunistic connec-
tions. Beyond our previous work, the main contributions
of this paper are, an enhanced stealing method, evaluation
of system behaviour, and mathematical bounds for per-
formance. We show considerable amounts of performance
gain and energy savings using our system. Although we
recognize that incentives, security and trust mechanisms
are essential for a successful mobile crowd, these issues are
not addressed in this work. For the purposes of this paper,
we have assumed that; incentive mechanisms are already in
place, and Honeybee is run on a secure environment.

2 RELATED WORK

Offloading computation and storage from mobile devices
to an external set of resources, has been explored in the

literature [24], [17], [37], [54]. With regards to the re-
source offloading, current research can be viewed from
three main perspectives: offloading to a remote resource
cloud[34], [15], [14], [13], [35], [30], to a local cloudlet or
local infrastructure[57], [6], and to other mobile devices [23],
[42], [18], [31], [21], [45], [28]. Each of the three methods
have advantages depending mainly on the existence of high
connectivity, additional infrastructure or node encounters
respectively. In our work, we focus on the third method,
ie., opportunistically sharing work with the surrounding
mobile devices, owing to issues with the other two ap-
proaches in cases of low network availability and lack of
established infrastructure. Furthermore, in Honeybee, we
also recognize the potential of using mobile devices as
agents of crowdsourcing[29], thereby exploiting the collective
power of human expertise and machine resources.

In much research regarding mobile work sharing, the
existence of a central server has been essential to either
co-ordinate jobs among the mobile devices [42],[36], or to
offload the work on to [12], [14], [34]. However, our system
follows a decentralized job sharing method, with the job
scheduling depending entirely on the availability of the
participating nodes. The concept of mobile devices forming
resource clouds has been discussed by Miluzzo et al. in [45],
which identifies key areas of ‘MCloud Management’ includ-
ing periodic resource discovery, formation, fault tolerance,
and handling mobility. In Honeybee, we also recognize the
need to address the aforementioned areas, plus load balanc-
ing, and provide a complete implementation that supports
them. An emulation testbed to evaluate the time and energy
savings of offloading to a Mobile Device Cloud has been
implemented in [21]. Such a testbed can be useful for mobile
application development using an API such as Honeybee
and some of the results reported from their testbed are
comparable with our figures. However, our experimental
data also suggest that there are additional factors that affect
the overall performance such as accommodating random
disconnections, unknown node capabilities, and unequal job
distributions. Phoenix [51] proposes a distributed storage
service using mobile devices in the vicinity, and shows the
possibility to ensure data longevity despite autonomous
node mobility. Honeybee, on the other hand, focuses on
offering computation services rather than storage. In most
mobile task sharing systems, Wi-Fi or 3G has been the most
used communication protocols, except in the cases such
as the MMPI framework [18], which is a mobile version
of the standard MPI over Bluetooth, and uses Bluetooth
exclusively for transmission, and Cuckoo[34], based on
the Ibis communication middleware [62], to offload to a
remote resource, and supports Bluetooth with Wi-Fi and
cellular. Although Honeybee has used Bluetooth in previ-
ous versions, the current implementation uses Wi-Fi Direct
due to better speeds and range. FemtoCloud [28] proposes
an opportunistic mobile edge-cloud platform that offloads
jobs to nearby mobiles, similarly to Honeybee. However,
whereas Honeybee does not require prior information about
the computational capabilities of the worker nodes to load-
balance the task, FemtoCloud’s scheduling strategy depends
on periodic capability estimations of each worker node.
At the other end of the spectrum, crowd computing[48], [47],
[52] has been shown to have the potential to use mobile

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

3

devices in a social context to perform large scale distributed
computations, via a static farming method. However, our
results show that the work stealing method can provide
better results. Social aware task farming has been proposed
as an improvement on simple task farming, and social aware
algorithms show better performance in their simulation
based on real world human encounter traces [48]. In the
future we hope to build on this result (social aware task
sharing) as an incentive for participation. In [26], human ex-
pertise is used to answer queries that prove too complicated
for search engines and database systems, and in Crowd-
Search [64], image search on mobile devices is performed
with human validation via Amazon Mechanical Turk. A
generic spatial crowdsourcing platform using smartphones
is discussed in [11], where queries are based on location
information. Mobile phones are used to collect sensor data
on Medusa [53], according to sensing tasks specified by
users. In Rankr [41], an online mobile service is used to ask
users to rank ideas and photos. These are primarily con-
cerned with the crowdsourcing aspect, using mobile devices
as tools to access an online crowdsourcing service that is
hosted on a remote server. In contrast, Honeybee defines
the crowd as the surrounding mobile devices and their users,
and focuses on sharing the tasks on a crowd of local mobile
devices with performance gain and saving energy as the
main goal. Indeed, results from the above research show us
that user participation is at a considerable level, and using
micro payments for such ‘micro tasks’ is viable.
Our work is different from these in terms of using only
local mobile resources opportunistically, satisfying the re-
quirements of a mobile device cloud of being proactive,
opportunistic and load-balanced while showing speedups and
energy savings in an actual implementation. Our focus is on
a model that can be used to implement a variety of tasks, not
limited to query processing, sensing, or human validation.
We compare and contrast features of Honeybee with similar
work focused on distributed mobile computation in Table 2.

3 MODEL AND ALGORITHMS

We define Mobile Crowd Computing as a group of dynami-
cally connected mobile devices and their users using their
combined machine and human intelligence to execute a task in
a distributed manner. Such a mobile crowd is comprised of
heterogeneous devices and could be unknown to each other
a priori. Participating mobile nodes may dynamically leave or
join the crowd without prior notice, and these must be accom-
modated by opportunistically seeking out new resources as
they are encountered and having appropriate fault-tolerance
mechanisms to support mobility.

Honeybee accommodates the above requirements by
being proactive and opportunistic, where jobs are ‘taken’
by nodes rather than ‘given to’ nodes, as the availability
and resourcefulness of each node is unknown a priori, and
subject to change any time. For example, if a participating
mobile device receives a call, its resourcefulness may de-
crease, or the user may move away, causing the device to be
unavailable. In this work, the device having the job queue
representing the task to be completed, is called the delegator

as it delegates a portion of its task to others. The devices
with whom these jobs are shared are referred to as workers.

3.1 Target applications
Target applications fall into three categories as given below:

1) Human aided computation is related to enabling collab-
oration among mobile device users for tasks demand-
ing human specific skills (eg: qualitative classification).

2) Machine computation applications aim to improve the
performance and/or conserving resources such as en-
ergy, for programs needing extensive computational
resources such as memory, battery, and CPU.

3) Applications using Hybrid computations are the ones
that are a mix of the two aforementioned categories.

3.2 Job scheduling method
The following characteristics of a mobile edge-cloud need to
be considered when scheduling jobs among nodes:

1) heterogeneity: since nodes may be of heterogeneous ca-
pability and jobs may require varying amounts of re-
sources, job allocation is non-trivial. Optimally stronger
nodes should do more work. An expiration mechanism
is needed so that stronger nodes can steal expired jobs
taken by weaker nodes. Otherwise, if jobs were farmed
equally, weak nodes may become bottlenecks.

2) unknown capability: since the delegator is unaware of
worker capability, it is not possible for the delegator
to assign more work to stronger nodes. Exchanging
metadata is not effective due to node dynamism, e.g.,
the node capabilities may change randomly, thereby
making the information derived from metadata invalid.

3) dynamism: due to mobility and factors such as human
intervention and low battery, nodes are prone to failure.
Hence the possibility of frequently disconnections and
new nodes randomly joining need to be supported, and
the overall strategy needs to focus on short term goals
and take advantage of opportunities as they arise.

Addressing heterogeneity and unknown device capability:
The well-known work stealing method [8] can accommodate
the first two factors of heterogeneity and unknown capability
given above. This been shown to be an efficient and scalable
load balancing method for shared and distributed memory
systems [16] in traditional distributed environments [63],
and has been used in Cilk ([9], [33]), Parallel XML pro-
cessing [40], and Energy-efficient Mobile grids [56]. Further-
more, it is able to achieve this without a centralized control,
and no prior information about the participating devices. As
shown in [33], work stealing is efficient even with different
processors with dynamically changing speeds.
Addressing dynamism: To satisfy the third factor of dy-
namism, we have included fault-tolerant mechanisms and
also opportunistically attempt to connect to new resources
as they are discovered in our model. The dynamic nature of
the mobile crowd can cause the following events:

1) a worker’s capability changes (e.g., moving away from
the delegator while keeping in range, or vice versa).

2) new devices appear within range.
3) a worker device continues to be visible, but becomes

non-responsive (e.g., the device stays within range, but
the user terminates participation due to low battery).

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

4

TABLE 2: Comparing Honeybee with related work

Name Objective Under-
lying
frame-
work

Com-
muni-
cation
proto-
cols

Ex-
ter-
nal
coor-
di-
na-
tion?

Load-balanced? Disconnec-
tions
supported?

Opportunis-
tic?

Job sharing

Honeybee Performance gain and
save energy. Speedups up
to 4 when sharing with
equally capable devices

None.
Imple-
mented
from
scratch

Wi-
FiDirect

No Yes. via work
stealing

Yes Yes, via
periodic
resource
discovery

Jobs are
proactively
taken by
nodes
rather than
given to

Hyrax[42],
[3]

Performance gain and
save energy. Performance
is compared against using
servers and not against
monolithic execution

Based
on
Hadoop

Wi-Fi Yes Not mentioned Yes, via
Hadoop’s
node failure
handling

No Name node
assigns jobs
to slave
nodes

MMPI[18] Performance gain.
Maximum speedup with
four nodes was 37% for
matrix multiplication

Based
on MPI

Blue-
tooth

No Not supported, but
has been suggested

No No Uses
Master-
Slave work
farming

Virtual
Mobile
Cloud[31]

Performance gain and
save energy. Performance
is less than 1% slower
slower than monolithic

Based
on
Hadoop

Wi-Fi No Not mentioned No. User
must be in a
stable space

Identify new
devices via
mobility
traces (not
imple-
mented)

Workers are
given jobs
by Master

Serendip-
ity [58]

Performance gain and
save energy. Speedups
upto 3 when sharing with
a stronger device

None Wi-Fi No Not mentioned Yes. via job
expiration

Yes. via
exchanging
meta-data

Workers are
given jobs
by Master

Mobile
Device
Cloud[21]:
an
emulation
testbed

Performance gain and
save energy. Gain in both
time and energy, up to
50% and 23%

Based
on
Serendip-
ity [58]

Blue-
tooth,
Wi-Fi,
Wi-
FiDirect

No Not mentioned No No Workers are
given jobs
by Master

MClouds[45]
Proposed
system, no
implemen-
tation

Pull data off the cellular
data channel & reduce
load on backend clouds

None Wi-Fi No Not mentioned Yes, by
monitoring
device
movement
& prior
notifications

Yes, via
periodic
resource
discovery

Workers are
given jobs
by Master

Femto-
Cloud [28]

Performance gain None Wi-Fi No Master schedules
jobs based on task
complexity and
computational
capability of the
workers

Yes Yes Workers are
given jobs
by Master

4) a worker ceases to be visible (e.g.: moving away, out of
the delegator’s range).

The first event is addressed by Honeybee’s work stealing
method as described earlier, since the mechanism automati-
cally adapts to workers’ changing circumstances. For exam-
ple, if the worker’s capability increases during execution, it
will complete its jobs faster, and steal more jobs from the
delegator. Otherwise, if the worker’s capability decreased,
it will take more time to finish its jobs which may lead
to the jobs being stolen by another node. The other three
events and Honeybee’s methods of addressing them are
shown in Figure 2. In the figure, at time t1 the mobile
crowd consists of the delegator n0 and workers w1 and w2,
who are already executing their jobs. The event described
in item 2 occurs at time t1 + δ when a new device w3

arrives within range of the delegator. Honeybee conducts
resource discovery every t2 − t1 seconds and therefore, the

Fig. 2: Handling device mobility and disconnections

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

5

new device w3 is discovered at time t2 when the discovery
occurs, whereupon Honeybee successfully recruits w3 as a
worker. An event similar to that given in item 3 occurs at
time t2 when w1 becomes non-responsive. Since w1 remains
within n0’s range, this is not evident from resource discov-
ery. To accurately identify that nodew1 has failed, Honeybee
employs heartbeats (Section 3.4.4) which alert the delegator
whenever a worker becomes non-responsive. As can be seen
in Figure 2, Honeybee receives heartbeats from w1 and w2

at time t1, but does not receive w1’s signal at t2. Hence w1 is
correctly identified as ‘dead’ and no longer participating in
the work sharing, in which case, the work that was stolen by
w1 is added back to the job pool so that someone else may
steal them. An event as described in item 4 occurrs at time
t3 when node w2 moves out of range from the delegator,
causing disconnection. This can be identified from resource
discovery as well as from the absence of w2’s heartbeat.

3.2.1 Automatic load balancing with work stealing
We employ a modified version of the work stealing
method [8] for job distribution and load balancing, adapted
to better suit an autonomous mobile environment with
frequent disconnections. The task to be completed is broken
down into a collection of jobs stored in the job queue. Jobs
do not need to be uniform but must be independent. Upon
program initiation, the delegator’s local execution thread
starts to consume the job queue. The same queue is also
consumed by the steal requests from worker devices. When a
device steals jobs from another device, the stealing device is
referred to as a thief and the other as victim. In our previous
work[22], [23], all the contents of the job queue were equally
distributed among all the workers at the start of the execu-
tion, and nodes would begin to steal after finishing their own
queues. However, this is not ideal for a number of reasons:

- As mobile environments are prone to disconnections,
giving a large number of jobs to a worker at once is
risky.

- Strong devices steal jobs from weaker devices, and this
load balances the work as time progresses. However,
stealing incurs transmission costs, especially if the job
data is large, so it is important to minimize the number
of times a job travels from node to node.

- The number of workers at the start of execution can
change throughout execution, and the system must be
able to take advantage of new devices encountered.

It is more efficient to let workers steal jobs in small chunks
when they are able to, and we have followed this method
in our latest model. Overall, the delegator steals from slow
workers and fast workers steal from the delegator.

3.3 Honeybee at work: Scenarios
In this section, we provide a walk-through of Honeybee in
action, followed by other scenarios where various tasks are
parallelized, distributed to and executed on mobile devices.

3.3.1 Transcribing on the train
Language translation and transcription have been success-
fully crowdsourced via online volunteers recently [65], [49].
YouTube now enables viewers to contribute and review

Fig. 3: Five nodes using work stealing

subtitles on some channels4, and viewers can also request
subtitles for videos. The Google Translate Community5 also
enables volunteers to translate and review phrases. This
concept of crowd-powered translation and transcription via
the Internet can be extended to allow edge-cloud enabled
crowdsourcing to utilise the linguistic knowledge of local
users. For example, consider a tourist John Doe travelling
on a train in a foreign country. He has several local films
in his tablet, but they are in the country’s native language,
which he does not understand. Unfortunately, these films do
not have subtitles. Looking around his train, John realizes
that the local passengers could help with his dilemma. But
how can he enlist them to solve his problem? Honeybee can
provide a solution as follows;

a) First, John uses his mobile device to split the video into
chunks of equal duration, thereby initiating his job queue
consisting of n jobs. This is illustrated in Figure 3, where
the total job queue is initialized at time t0.

b) Next, he scans the vicinity via the tablet’s Wi-Fi Direct,
looking for available worker devices.

c) Once a worker is connected, it steals k jobs from the
queue. In Figure 3, the delegator transmits stolen jobs
to workers w1 and w2 at times t1 and t2 respectively.

d) Using a mixture of human intelligence and machine
resources, each worker device processes its video chunks
by adding English subtitles to their jobs. For example, w1

executes its first batch of jobs starting from time t2.
e) As soon as a worker device completes m jobs, it sends

the results to John. To minimize communication costs,
workers only send back the subtitles, with markers in-
dicating the time intervals they correspond to. In Figure
3, John (delegator) receives results from workers w1, and
w2, at time t4 and from worker w3 at time t5.

f) When a worker finishes its jobs, it tries to steal more jobs
from John’s main job queue as can be seen at time t16.
Here, the delegator (since John does not have the knowl-
edge to add subtitles himself) does not work, and has
given all the jobs to workers. When w3, having finished
all of its jobs, tries to steal more from the delegator, the
delegator must then try to steal from some other slow
worker on behalf of w3. For example, the delegator steals
jobs from w4 at time t16, and sends them to w3 at time

4. https://www.youtube.com/watch?v=b9cKgwnFIAw
5. https://translate.google.com/community

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

6

t18. When John receives all completed jobs by time t19,
he sends a termination signal to all the workers.

g) As this occurs on board a train, passengers are frequently
getting on and off, including the ones owning the work-
ers. Whenever a worker disconnects, John’s tablet gets to
know several seconds later from the missing heartbeat.
In such a case, jobs stolen by the missing worker will
be added back to the queue, making them available for
another to steal. Such a scenario occurs at times t9 and t11

when workers w2 and w1 disconnect. In the case of w2,
the disconnection happens after it has sent the completed
jobs to the delegator, and before any new jobs were
stolen. Therefore, no further action is needed from the
delegator. However, when w1’s disconnection is sensed,
jobs had already been stolen by w1. When the delegator
decides that w1 has died, it looks up the jobs that were
given to w1, and adds them back to the queue. Similarly,
new workers may also join as passengers get on the train
as John is continuously scanning for new resources every
r seconds. Table 3 summarises the job characteristics.

TABLE 3: Job characteristics: Video transcribing on the train

Objective Execute program: delegator is incapable of doing
the task by itself and ∴ delegator does not work.

Worker
encounters

High

Disconnections High
Job format Video files
Result In string format

3.3.2 Facial recognition at the workplace

Even a resource rich environment can sometimes be unus-
able depending on the type of work and the location of data.
For example, take the case of Jane at her office equipped
with many PCs. She has hundreds of photographs on her
camera phone, taken at a recent office party. Her friend Mary
asks to send her all the photographs where Mary appears.
As Jane is unable to connect her phone to a computer, she
considers using her the device to run a facial recognition
app that compares each of the images with a photograph
of Mary and filters the ones containing her face. How-
ever facial recognition algorithms are costly, and processing
a large number of photographs could take a substantial
amount of time, freeze the device and drain the battery.
These challenges can be addressed by offloading/crowd-
sourcing the image processing task to external computing
resources, as explored in [59], [38], [44] and implemented
in projects such as GeoTag-X6 and Galaxy Zoo7. However,
the aforementioned approaches need remote clouds and/or
cloudlets, neither of which are available to Jane. Therefore
Jane employs Honeybee to share the task with mobile de-
vices belonging to her colleagues as follows:

a) The job queue has all photos taken on the specific day.
b) Each job has an image file (to be compared with Mary’s

image). The job characteristics are given in Table 4.
c) ‘Workers’ would be Jane’s colleagues’ mobile devices.

6. http://geotagx.org/
7. http://www.galaxyzoo.org/

d) Jane’s device begins to run the facial recognition pro-
gram on the job queue, and connects to the workers and
transmits jobs from the same queue in parallel.

e) Workers get image files from the job queue, and Mary’s
photo to compare against. As they finish their jobs, they
send the results to the delgator as Strings, indicating the
file name and whether it was positive or negative.

f) This will continue as described in detail in Section 3.3.1,
until all the jobs are completed.

g) Jane’s device would then copy all the images with a
positive result to a separate folder, ready for Jane to
transfer to Mary’s device via Bluetooth or Wi-Fi.

We experimentally evaluate a similar task in Section 5.

TABLE 4: Job Characteristics: Facial recognition in the office

Objective Obtain speedup: Delegator can do job by itself, but
requires too much time, battery and probability of
crashing is high. ∴ delegator does part of the job.

Worker
encounters

High: assuming a typical office environment

Disconnections Medium: assuming some office workers move in and
out of the space frequently, while some work steadily
at their desks

Job format Image files
Result In string format

3.3.3 Mandelbrot set generation in an underpriviledged
classroom
Cloud computing is already being applied in a number
of developing countries [43], but there are some practi-
cal issues such as frequent power interruptions, and the
need for robust broadband infrastructure [60]. However, the
usage of mobile phones and mobile data have increased
over the years, especially in the Middle East, Asia Pacific
and Africa [1]. Hence, resource sharing via mobile devices
can be greatly beneficial to such regions by empowering
them while spending little cost on upfront investments
and infrastructure. For example, let us take the case of
an underprivileged classroom, where the lesson is on the
Mandelbrot set. The teacher John wants to demonstrate how
different variables affect the set with aid of computers, but
does not have access to a laptop or PC. The school has some
tablets and most of the teachers and some students have
smartphones, but running Mandelbrot set generation on a
smartphone is not practical due to the time constraints of
the lesson and issues with battery drain and system failure.
Therefore, John decides to employ Honeybee as follows:
a) The Mandelbrot set is given as x rows and y columns,

and each job represents one row, giving a total of x jobs.
b) The potential worker devices would be the mobile de-

vices of the teachers and students in the vicinity.
c) The job descriptions are specified as strings and the re-

sults are transmitted from the workers as integer arrays.
The job characteristics are illustrated in Table 5.

This task has been implemented using Honeybee and exper-
imental results will be discussed in Section 5.

3.3.4 Other applications
Similar applications can be implemented using the same
principles in other areas such as disaster management,

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

7

TABLE 5: Job Characteristics: Mandelbrot set in the class-
room

Objective Obtain speedup: Delegator can do job by itself, but
will require too much time, battery and probability
of crashing is high. ∴ delegator does part of the job.

Worker
encounters

Medium

Disconnections Low: since students and teachers tend to stay within
a classroom, school boundaries within a given time

Job format String
Result As integer arrays

sensor data processing programs, and medical data analysis.
For example, use of external devices for processing bio-
signals has already been discussed in systems such as Mobi-
Health [32], and remote ECG data analysis [50] using remote
servers. However, instead of transmitting sensor data from
medical equipment over the Internet, Honeybee would use
the patients’ surrounding devices to analyse the data.

3.4 Strategies for efficiency optimisation
Several optimisations have been performed for efficiency,
including using Wi-Fi Direct as the mode of communication,
setting the steal limit and the mechanisms of job expiry,
heartbeats and periodic resource discovery.

3.4.1 P2P communication using Wi-Fi Direct
Wi-Fi Direct is used as the mode of communication to
achieve our objective of minimising transmission delays
(Table 1). Wi-Fi Direct allows P2P Wi-Fi connections be-
tween ‘Wi-Fi CERTIFIED R©’ devices without the need for
Wi-Fi APs [61], at Wi-Fi speeds. Its connection process has
three main stages; the search and discovery stage is the first,
and is followed by the Group Ownership negotiation stage.
Here, the P2P group is formed consisting of one P2P group
owner (GO) which implements AP-like functionalities, and
P2P clients. Since these roles are dynamic, devices need to
negotiate their roles prior to establishing the group [10]. The
device with the highest Intent value (a number from 0 to
15) is designated as the GO. The allocation of IP addresses
is the final stage, where the GO provides the clients with
IP addresses. As long as the hardware of GO supports
Wi-Fi Direct, legacy devices with upgraded software can
function as P2P clients. As shown in Table 6, Wi-Fi Direct
outperforms Bluetooth in speed, range and security.

TABLE 6: Comparing Wi-Fi Direct with Bluetooth

Bluetooth 4.0 Wi-Fi Direct
Speed 721.2 kbps (basic), 2.1 Mbps

(enhanced) & high speed op-
eration up to 54 Mbps [7]

up to 250Mbps

Range up to 100 m up to 200 m
Security AES 128-bit encryption WPA2 security
Power low-energy technology two power saving modes
Availability widely available not as widely available

3.4.2 Job expiry
The job expiry time is the minimum amount of time a worker
would be allowed to complete a given job. This mechanism
is needed to prevent stronger devices waiting indefinitely
for a weaker device attempting a very intensive task. After

a node starts running a job, it cannot be stolen. Hence the
delegator needs to decide whether or not to term the job/s
as expired and add them back to the job queue, which would
give a chance for any other node to complete it. Based on
the time the job/s were stolen, the oldest jobs would be
termed as expired. The only time a delegator expires jobs
is after an unsuccessful steal attempt and it’s job queue is
exhausted. For example, the scenario in Figure 4, shows the
number of jobs left in the delegator’s and a worker’s job
queues over time. For ease of illustration only one worker
is shown in the figure, although other workers exist. At T0,
the delegator has m number of jobs in its queue. At time
Te, workere successfully steals j jobs from the delegator.
These are received by workere at time Te + δ and workere
starts executing the stolen jobs immediately. However, from
the delegator’s point of view, the jobs were stolen at time
Te, and therefore, logs the jobs’ stolen time as Te. Time
progresses, and the delegator finishes its own job queue
at time Td. At this point, the delegator attempts to steal
some jobs from another worker (not workere) and is able
to add k stolen jobs to the queue at time Td + θ. By time
Tω , the delegator completes the aforementioned k number
of jobs as well. Once more, the delegator attempts to steal,
but receives a negative answer at time Ts. The delegator
examines the stolen job list after each unsuccessful steal and
at time Ts, the delegator consults the list of jobs that have
been stolen, but whose results have not been returned. The
oldest jobs left are then identified to be the j number of jobs
that were stolen by workere, are added back to delegator’s
queue, and are completed by time Tf . There may be cases
when the node workere is not actually a weak node, but
the j jobs are extremely intensive such that it is more time
consuming than all of the other jobs accumulated. However,
even in that scenario expiring the jobs would not harm the
overall performance as the task would be finished as soon
as either node finishes the job, and the nodes in the system
have no other jobs to work on.

Fig. 4: Expiring oldest jobs

3.4.3 Steal limit

Each device has a preset steal limit s, and can be described
as the number of jobs a nodes keeps in reserve when it
receives a steal request from another node. The steal limit
is job specific and the default value can be overridden to
suit the needs of the application. As opposed to jobs simply
being transferred among devices in an unending manner,
this ensures a device will not starve and computations will
eventually terminate.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

8

3.4.4 Worker heartbeat
The dynamic nature of mobile edge-clouds will incur fre-
quent and unpredictable disconnections. If the disconnec-
tions are unidentified, the delegator may wait unnecessarily
for the return of stolen jobs. To address this, each worker
sends a periodic signal to indicate that it is alive. If the
worker had sent results to the delegator, or acknowledged
a job transmission, within that time period they are also
counted as heartbeats. If the delegator cannot hear a worker
heartbeat for m consecutive checks, the delegator deems
that worker is dead, i.e, either moved away or lost connec-
tivity, and adds the respective stolen jobs back to the queue.

3.4.5 Periodic resource discovery
As much as random disconnections are an inherent attribute
of a mobile resource cloud, so too are random device en-
counters leading to connections. To support opportunistic
resource connections as and when they become available, a
periodic resource discovery is done by the delegator every
r seconds, and carried out till the task completes.

3.5 Conditions for speedup
The probability of speedup depends on a number of factors;

1) Parallelization overhead: the additional time spent on
co-ordination (initiating the job queue by breaking the
total task down to jobs, maintaining a thread pool,
synchronization, handling incoming messages from
workers, monitoring worker health) adds extra costs.
Communication costs (transmitting jobs to workers and
receiving results) are not included as they are included
in the workers’ job completion time (see factor 5 below).

2) The serial task running time should not be too short:
for tasks with very short running times, parallelising
and job distribution only add extra costs. The time
to complete a parallelised task on Honeybee depends
on the parallelisation overheads, running time of the
delegator thread doing useful work, and the running
time of delegator’s communication thread handling
worker transmissions. Depending on node capability,
and communication constraints, either thread may fin-
ish first. To match serial performance, the workers must
make up for at least the parallelisation overheads. To
gain speedups, the monolithic task time must at least
be greater than tcom + c to amortize the delegator’s
communication and parallelisation costs (where tcom
is the time to establish connections with the workers
plus the time to transfer jobs and results to and from
workers, and c is the delegator’s parallelisation cost).

3) Individual job size: once the total task is broken down
to individual jobs, each job size should not be too
large so that transmitting them to workers will incur
substantial communication costs. For example, if the
time to execute a given job jx on the delegator is time
tx and the communication time to transfer the said job
to a given worker, and its results back to the delegator
is time ty , then it must be that tx > ty .

4) Jobs must be independent: the current implementation
of Honeybee can only handle independent jobs.

5) The capability of worker devices: by this we refer not to
the CPU speeds alone, but overall how much work a

worker can do in a given time. Therefore, a worker that
has a powerful CPU, but has low availability would not
be considered as possessing high capability.

From the above list, items 1 to 4 can be determined prior to
job execution, and can be regarded as ‘known’. Items 1 to 3
are job dependent and item 4 depends on the implementa-
tion of the Honeybee framework. But the last item regarding
worker capability is impossible to know a priori. Worker
capability can further be expressed in terms of the amount
of work a worker completes compared to the delegator.

3.6 Upper and lower bounds for speedup
Let us denote each device as ni, where the delegator would
be denoted as n1, and the time taken to complete m jobs
on n1 as t1. The time taken to receive, complete and send
the results of m jobs on a worker device ni can be given as
ti, where i > 1. To express the ‘capability’ of worker ni in
terms of n1, the relationship between t1 and ti where i > 1
needs to be examined. Let us say there exists a non negative
constant ki for each ni device such that ki is the relative
power of ni compared to n1, and given as follows:

ti
t1

= ki (1)

Let us say that a task consisting of l jobs were completed
on this system containing nodes from 1 to f . If the number
of jobs completed by each node ni can be given by hi, then
the total number of jobs completed by the delegator node
n1 is h1, where l > h1 > 0. Then, the total number of
jobs completed by all the worker nodes can be given by
f∑

i=2
hi = l−h1. Depending on the values of h1 and l−h1, and

assuming that all the jobs were equal, the capability of the
worker devices can be compared to the delegator. Therefore,
the worst case scenario for Speedup is when the collective
capability of workers is weaker than the delegator; i.e.
h1 > l − h1. Here, Speedup S is defined as the comparison
between the time taken to complete a task using Honeybee
versus the time taken to execute the task monolithically (the
‘monolithic version’ refers to the task without any of the
parallelizing components). Therefore, when tM is the time
to complete the ‘monolithic version’ of the task on delegator
node n1, and tp is the total time to complete the parallelized
version using Honeybee, S can be given as,

S =
tM
tp

(2)

We gave an upper bound for Speedups in our previous
work [23] as S = 1 + 1

k2
+ 1

k3
+ ... + 1

kf
, assuming equal

jobs and ignoring overheads. Since the overheads are non-
negligible, and jobs are not always guaranteed to be equal,
the actual speedups would be less than this value. Here,
we derive a lower bound for speedup, considering the
worst case scenario discussed above. We assume that the
delegator will be doing part of the job, although it is not
always the case (e.g., the scenario in Section 3.3.1). If the
delegator is unable to contribute to the work, there could
not be a comparison for Speedup anyway. In the worst
case scenario, the collective capability of worker devices
is infinitely less than that of the delegator. Let us assume
that in the extreme case, the collective capability of the
workers is so small compared to the delegator, that their
contribution is non-existent. This is similar to the case when

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

9

the delegator executes the parallelised version, but fails
to find any worker nodes during the entire course of the
execution. There are still overheads with no workers, such
as parallelising costs and searching for workers periodically.
In this case, if the time to complete the parallelised version
only using delegator n1’resources is given by to, then to is
greater than tM . Since the monolithic version is devoid of
the parallelisation overhead, to is given by,

to = tM + c, c is the parallelizing overhead for n1 (3)
Figures 5a and 5b show the scenarios for task times tM
and to. As explained in Section 3.4.2, the effect of extremely
weak nodes is dealt with by expiring the oldest jobs after
the delegator exhausts its own queue. Let us say the time
for the delegator to complete the jobs, with extremely weak
nodes that do not contribute to the work in any way, is time
tō (Figure 5c), i.e.,
tō = to + e,where e is the job expiration cost for n1 (4)

Hence the worst case job completion time tworst when all
workers are infinitely weaker than the delegator is,

tworst = tō = tM + c+ e (5)
∴ the lower bound for speedup can be derived as,

S ≥ tM
tM + c+ e

(6)

In summary, the collective capability must amortise the par-
ellelisation cost, as experimentally illustrated in Section 5.

Fig. 5: Comparing the task time for three scenarios

4 IMPLEMENTATION

Honeybee is implemented on Android, using Wi-Fi Direct
as the communication protocol. Application developers can
use the methods and interfaces provided by the framework
for writing work sharing mobile apps. As shown in Figure 6,
the framework contains three main components responsible
for the main areas of Application interfacing, Job Handling,
and Communication.

Fig. 6: Main Components in the Delegator

4.1 The application component
The Application layer methods interfaces between applica-
tion specific code and the core structure. At the starting
point of execution, the framework extracts the application
specific parameters via the AppRequest interface that pro-
vides abstractions to represent the task as a list of jobs.

4.2 The job handling component

The initialization of the job pool begins with processing the
AppRequest object. Once the AppRequest task is broken
into sub tasks, or jobs, they are stored in two data structures:
in an array allJobs that is not modified throughout exe-
cution and in a ConcurrentLinkedQueue jobList, which
is subject to change dynamically, as jobs are removed and
added from accessing threads. The array is maintained for
validation purposes. During the lifetime of the program,
jobList is accessed by several processes as given below:

1) Delegator’s local job execution thread: Jobs are con-
sumed by polling the jobList from the head.

2) Steal request threads from workers: as steal requests
arrive from the Communication component, they are
processed by the Job Handling component which cre-
ates Callable instances to consume jobs in k chunks
from jobList. More than one steal requests may arrive
and be processed at the same time.

3) Threads carrying stolen jobs from workers: When the
delegator steals jobs from workers, they are passed
from the Communication component to the Job han-
dling component, where the job parameters are de-
coded and assembled into jobs, and added to the
jobList.

4) Fault tolerance threads: as fault tolerance mechanisms,
jobs that were already assigned to workers may pre-
sumed ‘lost’ and be added back to jobList. This
takes place when jobs expire (Section 3.4.2), or worker
heartbeats are missed (Section 3.4.4).

In cases (3) and (4) above, when jobs are added, new
local execution threads are spawned as Runnable tasks and
added to a single thread pool, thereby ensuring that only one
local execution thread is running at a given time. These are
then executed locally as described in case (1).

4.3 The communication component

Potential workers are identified by running resource discov-
ery every t seconds. Whenever a new resource is detected,
the user has the choice to initiate a connection. For each
successful worker connection, a reading thread is kept alive
throughout the lifetime of the connection as the delegator
needs to receive various messages from the workers at
intermittent intervals. The messages expected to be received
and written by the delegator are summarized in Table 7.

TABLE 7: Types of I/O messages handled by the Delegator

Read Write
1. Steal requests by workers 1. Jobs stolen successfully by

workers
2. Workers’ acknowledgement
of receiving job data

2. Reply to unsuccessful steal
attempts by workers (when the
delegator does not have any
jobs for workers to steal)

3. Negative replies to steal at-
tempts by the delegator (when a
worker does not have any jobs)

3. Steal requests from delegator
(when the delegator attempts to
steal from others)

4. Stolen jobs in cases of success-
ful steals

4. Termination signal sent to
workers once delegator verifies
all jobs have been completed.

5. Results sent by workers
6. Worker heartbeats

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

10

5 EXPERIMENTAL EVALUATION

This section evaluates the Honeybee algorithm, focusing on
speedup, and the best and worst case scenarios of machine-
centric computation. Human-centric computation with an
app for collaborative photography is discussed in our pre-
vious work [23], [22].
Testbed: A heterogeneous testbed of smartphones were
used in the evaluations of the previous phases of our model
in [25], [22], [23], representing low to mid-end mobile de-
vices. For this phase, we chose a testbed of 9 Nexus 7 (2012)
tablets, representing high-end mobile devices, and each
worker device was placed within 1m of the delegator. As
work-stealing was shown to be effective on a heterogeneous
set of devices in [23], in this phase, we use a homogeneous
testbed to further extend the range of testing, and to simplify
the analysis of results. To ensure objective comparison, the
same device was used as the delegator (Android 4.2.2) for
all of the tests. Performance using Honeybee was evaluated
against performance of the monolithic versions. In particu-
lar, the evaluation objectives are: 1) examine the speedups
for a fixed task size for varying number of devices; 2)
examine the speedups for fixed numbers of devices for
varying task sizes; 3) examine energy consumption for a
fixed task size for varying number of devices; 4) exper-
imentally demonstrate the mathematical lower bound on
speedup; and 5) examine program behaviour with random
disconnections.The results were obtained from two applica-
tions implemented using the Honeybee API, as given below:
Distributed face detection: Face detection requires a large
amount of CPU and memory. Running face detection on a
considerable number of images is usually very slow, and can
cause the application to be non-responsive, or even cause
OutOfMemoryExceptions and incur high energy costs. Us-
ing Honeybee, we aim to address these issues by sharing
the resource intensive computations with other devices. In
this application, Android’s native face detection algorithms
are executed on a collection of photographs. This collection
contains 30 unique image files with a total size of 8.4 MB. In
order to achieve uniform comparisons for different job pool
sizes, we duplicate the same files for job pools of 120, 240,
480, 960, 1920, 3840, and 4800. These images are stored in
the delegator (a Nexus 7) at the start of execution.
Distributed Mandelbrot set generation: In the context of
the Mandelbrot set, jobs represent rows of a 300 x 300
Mandelbrot image. These applications were chosen for their
different characteristics, as listed in Table 8.

TABLE 8: Applications’ characteristics

Name Type Inputs Outputs
Face de-
tection

Machine
centric: CPU
and memory
intensive

Images-
large data
size

String with image name
and # faces detected,
small data size.

Mandelbrot Machine
centric: CPU
intensive

Strings-
Small data
size

Integer arrays, large
data size.

5.1 Results & Discussion

Figures 7, 8 illustrate the performance results of experiments
for the Face detection app and the Mandelbrot app using

Honeybee. All tests were repeated at least three times.
These are summarised in Table 9 with the average speedup,
standard deviation of speedups and the confidence (Cd) for
significance value of 0.05.

TABLE 9: Results with standard deviation and confidence

#Devices F
A
C
E
M
A
T
C
H

Avg.
S Std Cd M

A
N
D
E
L
B
R
O
T

Avg
S Std Cd

2 1.680 0.082 0.093 1.621 0.096 0.094
3 2.247 0.074 0.084 2.145 0.114 0.129
4 2.819 0.058 0.066 2.683 0.042 0.042
5 3.213 0.109 0.123 3.083 0.117 0.115
6 3.879 0.164 0.186 3.374 0.056 0.049
7 4.012 0.059 0.066 3.471 0.084 0.074
8 - - - 3.655 0.095 0.094
9 - - - 3.724 0.057 0.064

5.1.1 Performance gain
Both applications were tested for speedups for a fixed task
size while varying the number of devices. Figure 7a gives
the face detection performance results for 960 images. As
can be seen, the speedup is proportional to the number of
devices and the maximum average speedup observed was
4.012 for 7 devices. Results from Mandelbrot set generation
show a similar trend in Figure 7b where the maximum av-
erage speedup was 3.724. Figure 7c shows the speedups for
Face detection using varying numbers of jobs versus a fixed
number of devices. Comparing the results for both 2 and 3
devices, in both cases the speedup increases proportionally
to the task size. Figures 7dand 7e show the percentage
and amount of time saved for Face detection, and Figure
7f shows the percentage of time saved for Mandelbrot set
generation. As can be seen from all three graphs, the time
saved is proportional to task size (total number of jobs) and
amount of resources. From Figures 7a, 7b, 7d and 7f, it is
clear that the speedup plateaus after reaching the maximum
speedup value. Overheads due to maintaining connections
and parallelisation could be the reason for this. From a com-
munication perspective, as the number of concurrent con-
nections increase, the workers must compete for the same
channel, thereby reducing the data rate for each device.
Furthermore, the delegator must manage more concurrent
threads as more and more workers connect, which can slow
the delegator. This is evident from Figures 7a, 7b, and 7f,
where the rate of performance increase gradually slows
down as number of devices increase (discussed further in
section 5.1.6 according to data in Table 12). Implementing
a hierarchical structure may help to overcome this barrier.
In Figure 8a speedups are mapped against the percentage of
jobs done by the delegator for Face detection. Here it is clear
that maximum speedups are obtained when the delegator
does the least amount of work.

5.1.2 Effect of Wi-Fi Direct
When comparing these results with the results for Face
detection in our previous work in Phase II [23] using Blue-
tooth, there is a marked improvement in communication
costs. In this phase, using Wi-Fi Direct, the average data
rates of the workers and the delagator are 10.444 Mbits/s,
and 14.262 Mbits/s respectively. In contrast, using Bluetooth
3.0, the average job transfer rate of the delegator for the

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

11

Fig. 7: Experimental results on Face Detection and Mandelbrot set

Fig. 8: Experimental results continued

same app was 2.124 Mbits/s. The Wi-Fi Direct speeds ob-
served appear to be much less than its maximum speed
(Table 6). This may be caused by maintaining multiple
connections. A main drawback of Wi-Fi Direct is its long
group formation time compared to Bluetooth. To amortise
this, the groups need to have a significant life time, and/or
have heavy data communication. It was also found that only
a maximum of 8 Wi-Fi Direct connections were supported
per each Nexus 7 device, limiting tests to a maximum of
9 devices. New D2D technologies like LTE-Direct8 may be
able to solve these problems. Compared to Wi-Fi Direct,

8. www.qualcomm.com/invention/research/projects/lte-direct

LTE-Direct has a greater range (up to 500m), has a faster
one-step connection process, and its ‘always-on’ discovery
method enables it to discover more peers continuously.
Hence using LTE-Direct for Honeybee can give support
for more workers over a greater range, thus giving more
mobility and better performance.

5.1.3 Energy consumption

The energy consumption was measured via the Android
battery API. Battery levels of the delegator were taken just
before the program start and just after program end. Our
experiments with the Face detection app for 1920 images are
summarized in Figure 8b showing the battery drain of the
delegator and the workers. As can be seen, the energy usage
of the delegator is almost halved from 11.67 % to 6.80% with
just one worker. The average battery usage per each worker
is also reduced as the number of workers increase, and the
energy usage per worker is less than the delegator’s use.
However, as the number of workers increase, the energy
saving does not increase drastically, possibly owing to costs
related to parallelisation and maintaining connections.

5.1.4 Lower bound

We tested the worst case scenario using Honyebee as dis-
cussed in Section 3.6 and measured the cost of job expiry. We
emulated ‘weak workers’ by running an infinite loop inside
the worker devices, thereby making them infinitely slower
than the delegator. In this case, although the delegator is
connected to workers and the workers have stolen some
work, the workers are so slow that the delegator expires the
stolen jobs and completes all of the jobs by itself. As can
be seen from Table 10, the experiments gave an average
performance loss of 9.9% for tō. In contrast, the average
performance loss for to (as discussed in Section 3.6, Equation
3) was 7.8%, which gives a 2.1% difference in cost between

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

12

TABLE 10: Speedups for worst case senario in several setups

Setup Speedup Performance loss
7 workers 0.9012 (1-0.9012) * 100 = 9.8741%
4 workers 0.8906 (1-0.8906) * 100 = 10.9439%
3 workers 0.8956 (1-0.8956) * 100 = 10.4382%
2 workers 0.9096 (1-0.9096) * 100 = 9.0342%
1 worker 0.9070 (1-0.9070) * 100 = 9.2978%

the scenarios discussed in Figures 5b and 5c, possibly due
to the cost of establishing connections and job expiry.

5.1.5 Random disconnections
To test the effectiveness of fault tolerance mechanisms han-
dling random disconnections, the delegator was program-
matically forced to disconnect its workers at a 10 second
interval until no workers remained. This was tested with
a setup of 4 workers and the disconnection process was
commenced after all 4 workers had started working. The
lost jobs were re-assigned to the delegator and the program
finished with a speedup despite the disconnections. The
results of this scenario with 4 workers is similar to having 1
consistent worker as given below in Table 11.

TABLE 11: Speedup with random disconnections

Setup Speedup Jobs by Delegator
4 workers randomly disconnected 1.696 63.333%
1 consistent worker 1.673 63.889%

5.1.6 Device busyness
The efficiency of the system depends on minimising the
idle time of the participating nodes by keeping them busy
doing useful work. However, bottlenecks in transmission
and multi-threading can cause idling. To investigate this,
data gathered from the test runs of the Face detection app
for 1920 jobs were analysed. Table 12 compares data from
three configurations: 1, 3, and 7 workers. Each device’s com-
putation time and reading time were measured and given
as percentages of its total program time. For example, for 1
worker, the worker’s average computation time was 73.53%
of its total time. As can be seen from Table 12, the average
computation time of a worker decreases significantly as the
number of workers increase. Although this trend is also
evident in the delegator’s computation time, the decrease is
very slight. However, the average reading time increases for
more workers, despite the decrease in the data being read by
each one. As the delegator needs to communicate with and
transfer jobs to more and more workers, the time available
to each worker can be less. In the case of Face detection,
the majority of transmission time is spent on transmitting
the jobs (images) from the delegator to workers. The data
observed in Table 12 suggests that as the number of workers
increase, each worker needs to wait a greater length of
time to receive its jobs, thereby decreasing time spent on
calculation (useful work). This behaviour is also evident in
the speedups as discussed in Section 5.1.1.

5.1.7 Data movement
The same test results discussed in previous section 5.1.6
were examined to check the movement of data within the

TABLE 12: Breakdown of test results for Face detection

#
work-
ers

Avg. delega-
tor compu-
tation time

Avg. worker
computa-
tion time

Avg. worker
reading
time

Avg. data
read by each
worker

1 99.96% 73.53% 8.53% 190.24MB
3 99.95% 67.78% 11.19% 106.13MB
7 99.93% 57.31% 12.92% 56.43MB

participating nodes. The experiments were run on 1920
jobs, which translates to a set of 1920 image files, with a
total job data size of 538.4 MB. The jobs were originally
on the delegator, but moved to workers during the course
of execution, as stealing occurred. Table 13 illustrates the
amount of data that were transmitted from delegator and
the sum of data read by all the workers. The amount of
transmitted data does not exceed the actual job data size of
538.4 MB in any of the 3 configurations. The percentage
of data transmitted increases from 35.34% to 66.02% as
workers are increased from 1 to 7, showing that a higher
number of offloading occurred with the addition of workers.
Also data was not moved unnecessarily among devices.

TABLE 13: The movement of data in Face detection app

work-
ers

Avg. data writ-
ten by delegator

Avg. total data
read by workers

Avg. offloaded
data

1 190.24 MB 190.24 MB 35.34%
3 291.26 MB 291.26 MB 54.10%
7 355.44 MB 355.44 MB 66.02%

6 CONCLUSIONS & FUTURE DIRECTIONS

We present the following conclusions. Firstly, work sharing
among an autonomous local mobile device crowd is a
viable method to achieve speedups and save energy. The
addition of new resources up to an optimal amount, can
yield increased speedups and power savings. Secondly, a
generalized framework can be used for abstracting methods
and enabling parameterisation for different types of tasks
made of independent jobs. Thirdly, inherent challenges of
mobile computing such as random disconnections, having
no prior information on participating nodes, and frequent
fluctuations in resource availability can be successfully ac-
commodated via fault tolerance methods and work stealing
mechanisms.

The Honeybee model caters to tasks that can be decom-
posed into independent jobs. Many crowd computing tasks
for mobile devices are suited to this model, for e.g., video
transcribing (Section 3.3.1), language translation, medical
data analysis (Section 3.3.4), face detection (Section 3.3.2)
and mathematical demonstrations (Section 3.3.3). However,
there are other tasks that cannot be easily decomposed into
independent jobs. Work done by Agrawal et al. shows that
work stealing can be further enhanced for dependent jobs[4]
and we aim to work in this area in the future. Incentive man-
agement and security are important for the deployment of
successful mobile crowd applications. However, designing
a comprehensive and realistic incentive scheme for mobile
crowd computing applications requires further research in
collaboration with policy, legal and economics scholars [5],
as does providing security and trust mechanisms. As the
main focus of this paper was performance gain and energy
conservation, these two areas were out of scope. For this

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

13

work, we have built Honeybee with the assumption that an
incentive system and a secure environment are already in
place. Future work could be possible in designing a secure
platform for mobile crowd computing applications, sup-
porting incentive management. Moreover, this work focused
on the evaluation of machine-centric computation. How-
ever, as discussed in Section 3.3, applications that employ
human intelligence are also feasible using the Honeybee
model. For example, the face detection app in Section 5 can
be modified so that human intelligence is used to identify
the faces detected by the machine. We aim to extend our
evaluations to focus on this aspect, using additional criteria
such as accuracy and usability in our future work. Further-
more, as observed in our experiments, the performance gain
plateaus as the number of worker nodes increase due to the
additional costs that occur when a single device (delegator
as P2P group owner) maintains multiple connections. To
overcome this and scale up, we plan to extend Honeybee
to support other topologies and initial experiments in [39],
where an early version of the Honeybee model was ex-
tended to support hierarchical Bluetooth connections, show
consistent speedups using a linear topology, with an inter-
mediate node functioning both as a worker and a delegator.
For this approach, a combination of Bluetooth and Wi-Fi
Direct in alternate hierarchical layers can be explored as
Wi-Fi direct does not support multiple Wi-Fi direct groups.
We also plan to experiment with latest D2D technologies
such as LTE-Direct to improve performance. In addition, the
experiments in this paper were performed in a controlled
setting. We plan to extend these tests to more realistic
scenarios by using mobility patterns to simulate churn.

REFERENCES

[1] Cisco visual networking index: Global mobile data traffic forecast
update. http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/ip-ngn-ip-next-generation-network/white
paper c11-520862.html.

[2] DARPA Creates Cloud Using Smartphones.
http://www.informationweek.com/mobile/
darpa-creates-cloud-using-smartphones/d/d-id/1111323.

[3] The hyrax project. http://hyrax.dcc.fc.up.pt/.
[4] K. Agrawal, C.E. Leiserson, and J. Sukha. Executing task graphs

using work-stealing. In Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–12, April 2010.

[5] M. S. Bernstein. Crowd-powered systems. KI - Künstliche Intelli-
genz, 27(1):69–73, 2013.

[6] K. Bhardwaj, S. Sreepathy, A. Gavrilovska, and K. Schwan. Ecc:
Edge cloud composites. In Proceedings of 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering,
pages 38–47, 2014.

[7] Bluetooth. Specification of the bluetooth system version 4.1.
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.
ashx?doc id=282159, December 2013. Accessed: 25/06/2014.

[8] R. Blumofe and C. Leiserson. Scheduling multithreaded computa-
tions by work stealing. J. ACM, 46(5):720–748, 1999.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime
system. SIGPLAN Not., 30:207–216, August 1995.

[10] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. Device-to-
device communications with wi-fi direct: overview and experi-
mentation. Wireless Communications, IEEE, 20(3):96–104, June 2013.

[11] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng,
C. C. Cao, Y. Tong, and C. J. Zhang. gMission: a general spatial
crowdsourcing platform. Proceedings of the VLDB Endowment,
7(13):1629–1632, 2014.

[12] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proc. of the
6th conference on Computer systems, EuroSys, pages 301–314, 2011.

[13] B. Chun and P. Maniatis. Dynamically partitioning applications
between weak devices and clouds. In Proc. of the 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Networks and Beyond,
MCS, pages 71–75, New York, USA, 2010. ACM.

[14] E. Cuervo, A. Balasubramanian, Dae-ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer
with code offload. In Proc. of the 8th Intl conference on Mobile systems,
applications, and services, MobiSys, pages 49–62, New York, USA,
2010. ACM.

[15] L. Deboosere, P. Simoens, J. De Wachter, B. Vankeirsbilck, F. De
Turck, B. Dhoedt, and P. Demeester. Grid design for mobile thin
client computing. Future Generation Computer Systems, 27(6):681 –
693, 2011.

[16] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha. Scalable work stealing. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, SC
’09, pages 53:1–53:11, NY, USA, 2009. ACM.

[17] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mo-
bile cloud computing: architecture, applications, and approaches.
Wireless Communications and Mobile Computing, 2011.

[18] D. C. Doolan, S. Tabirca, and L. T. Yang. Mobile parallel comput-
ing. In Proc. of the 5th Int’l Symposium on Parallel and Distributed
Computing, pages 161–167, 2006.

[19] D. C. Doolan, S. Tabirca, and L. T. Yang. MMPI a message
passing interface for the mobile environment. In Proceedings of
the 6th International Conference on Advances in Mobile Computing and
Multimedia, MoMM ’08, pages 317–321, NY, USA, 2008. ACM.

[20] U. Drolia, R. Martins, Jiaqi Tan, A. Chheda, M. Sanghavi,
R. Gandhi, and P. Narasimhan. The case for mobile edge-clouds. In
Ubiquitous Intelligence and Computing, 2013 IEEE 10th International
Conference on and 10th International Conference on Autonomic and
Trusted Computing (UIC/ATC), pages 209–215, Dec 2013.

[21] A. Fahim, A. Mtibaa, and K. A. Harras. Making the case for
computational offloading in mobile device clouds. In Proc. of the
19th Int’l Conference on Mobile Computing & Networking, pages 203–
205, NY, USA, 2013.

[22] N. Fernando, S. W. Loke, and W. Rahayu. Mobile crowd comput-
ing with work stealing. In Proc. of the 15th Int’l Workshop on Mobile
Cloud Computing Technologies and Applications (NBiS), Sept. 2012.

[23] N. Fernando, S. W. Loke, and W. Rahayu. Honeybee: A pro-
gramming framework for mobile crowd computing. In Mobile and
Ubiquitous Systems: Computing, Networking, and Services, volume
120, pages 224–236. Springer Berlin Heidelberg, 2013.

[24] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud comput-
ing: A survey. Future Generation Computer Systems, 29(1):84 – 106,
2013.

[25] N. Fernando, Loke S. W., and W. Rahayu. Dynamic mobile cloud
computing: Ad hoc and opportunistic job sharing. In IEEE Int’l
Conference on Utility and Cloud Computing, pages 281 –286, Dec.
2011.

[26] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.
CrowdDB: answering queries with crowdsourcing. In Proc. of
the ACM SIGMOD International Conference on Management of data,
pages 61–72, 2011.

[27] R.K. Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current
state and future challenges. Communications Magazine, IEEE,
49(11):32–39, November 2011.

[28] K. Habak, M. Ammar, K. Harras, and E. Zegura. Femtoclouds:
Leveraging mobile devices to provide cloud service at the edge.
In Proceedings of the 8th IEEE International Conference on Cloud
Computing, 2015.

[29] J. Howe. The rise of crowdsourcing. http://www.wired.com/
wired/archive/14.06/crowds.html, 2006.

[30] D. Huang, X. Zhang, M Kang, and J. Luo. Mobicloud: Building se-
cure cloud framework for mobile computing and communication.
In Proc. of the 5th IEEE Int’l Symposium on Service Oriented System
Engineering (SOSE), pages 27 –34, 2010.

[31] G. Huerta-Canepa and D. Lee. A virtual cloud computing
provider for mobile devices. In Proc. of the 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Networks and Beyond,
pages 61–65, NY, USA, 2010.

[32] V. Jones, A. Halteren, I. Widya, N. Dokovsky, G. Koprinkov,
R. Bults, D. Konstantas, and R. Herzog. Mobihealth: Mobile health
services based on body area networks. In M-Health, Topics in
Biomedical Engineering, pages 219–236. Springer US, 2006.

[33] N. Jovanovic and M.A. Bender. Task scheduling in distributed
systems by work stealing and mugging - a simulation study. In

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560163, IEEE
Transactions on Cloud Computing

14

Information Technology Interfaces, 2002. ITI 2002. Proceedings of the
24th International Conference on, pages 259 – 264 vol.1, 2002.

[34] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: A computa-
tion offloading framework for smartphones. In Mobile Computing,
Applications, and Services, volume 76, pages 59–79. Springer Berlin
Heidelberg, 2012.

[35] K. Kim, S. Lee, and P. Congdon. On cloud-centric network
architecture for multi-dimensional mobility. SIGCOMM Comput.
Commun. Rev., 42(4):509–514, September 2012.

[36] M.D. Kristensen. Scavenger: Transparent development of efficient
cyber foraging applications. In Proc. of the IEEE Int’l Conference on
Pervasive Computing and Communications (PerCom), pages 217 –226,
Apr 2010.

[37] K. Kumar, J. Liu, Y. Lu, and B. Bhargava. A survey of computation
offloading for mobile systems. Mobile Networks and Applications,
18(1):129–140, 2013.

[38] Y. Liu, V. Lehdonvirta, M. Kleppe, T. Alexandrova, H. Kimura, and
T. Nakajima. A crowdsourcing based mobile image translation
and knowledge sharing service. In Proceedings of the 9th Interna-
tional Conference on Mobile and Ubiquitous Multimedia, page 6. ACM,
2010.

[39] S. W. Loke, K. Napier, A. Alali, N. Fernando, and W. Rahayu. Mo-
bile computations with surrounding devices: Proximity sensing
and multilayered work stealing. ACM Trans. Embed. Comput. Syst.,
14(2):22:1–22:25, February 2015.

[40] W. Lu and D. Gannon. Parallel xml processing by work stealing.
In Proceedings of the 2007 workshop on Service-oriented computing
performance: aspects, issues, and approaches, SOCP ’07, pages 31–38,
New York, NY, USA, 2007. ACM.

[41] Ya. Luon, C. Aperjis, and B. Huberman. Rankr: A mobile system
for crowdsourcing opinions. In Mobile Computing, Applications, and
Services, volume 95, pages 20–31. Springer Berlin Heidelberg, 2012.

[42] E. E. Marinelli. Hyrax: Cloud Computing on Mobile Devices using
MapReduce. Carnegie Mellon University, Masters thesis, 2009.

[43] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A Ghalsasi.
Cloud computing the business perspective. Decision Support
Systems, 51(1):176 – 189, 2011.

[44] S. Mavandadi, S. Dimitrov, S. Feng, F. Yu, U. Sikora, O. Yaglidere,
S. Padmanabhan, K. Nielsen, and A. Ozcan. Distributed medical
image analysis and diagnosis through crowd-sourced games: a
malaria case study. PloS one, 7(5):e37245, 2012.

[45] E. Miluzzo, R. Cáceres, and Y. Chen. Vision: Mclouds - computing
on clouds of mobile devices. In Proc. of the 3rd ACM Workshop on
Mobile Cloud Computing and Services, MCS, pages 9–14, NY, USA,
2012.

[46] A. Mtibaa, A. Fahim, K. Harras, and M. Ammar. Towards resource
sharing in mobile device clouds: Power balancing across mobile
devices. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 51–56, 2013.

[47] D. G. Murray, K. Nilakant, J Crowcroft, and E Yoneki. Task farming
in crowd computing. Mobile Ad Hoc Networking: Cutting Edge
Directions, Second Edition, pages 491–513, 2013.

[48] D. G. Murray, E. Yoneki, J. Crowcroft, and S. Hand. The case
for crowd computing. In Proc. of the 2nd SIGCOMM workshop on
Networking, systems, and applications on mobile handhelds, pages 39–
44, 2010.

[49] J. Oomen and L. Aroyo. Crowdsourcing in the cultural heritage
domain: Opportunities and challenges. In Proceedings of the 5th
International Conference on Communities and Technologies, C&T
’11, pages 138–149, NY, USA, 2011. ACM.

[50] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, and R. Buyya.
An autonomic cloud environment for hosting ecg data analysis
services. Future Generation Computer Systems, 28(1):147 – 154, 2012.

[51] R.K. Panta, R. Jana, F. Cheng, Y.R. Chen, and V.A. Vaishampayan.
Phoenix: Storage using an autonomous mobile infrastructure. Par-
allel and Distributed Systems, IEEE Transactions on, 24(9):1863–1873,
2013.

[52] K. Parshotam. Crowd computing: a literature review and def-
inition. In Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference, pages 121–130.
ACM, 2013.

[53] M. Ra, B. Liu, T. La Porta, and R. Govindan. Medusa: a pro-
gramming framework for crowd-sensing applications. In Proc. of
the 10th int’l conference on Mobile systems, applications, and services,
MobiSys, pages 337–350. ACM, 2012.

[54] J. Ren, Y. Zhang, K. Zhang, and X. Shen. Exploiting mobile crowd-
sourcing for pervasive cloud services: challenges and solutions.
Communications Magazine, IEEE, 53(3):98–105, 2015.

[55] J. Rodrı́guez, C. Mateos, and A. Zunino. Are smartphones really
useful for scientific computing? In Proceedings of the Second In-
ternational Conference on Advances in New Technologies, Interactive
Interfaces and Communicability, ADNTIIC’11, pages 38–47, Berlin,
Heidelberg, 2012. Springer-Verlag.

[56] J. Rodriguez, C. Mateos, and A. Zunino. Energy-efficient job steal-
ing for CPU-intensive processing in mobile devices. Computing,
96(2):87–117, 2014.

[57] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case
for vm-based cloudlets in mobile computing. Pervasive Computing,
IEEE, 8(4):14 –23, 2009.

[58] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura. Serendip-
ity: Enabling remote computing among intermittently connected
mobile devices. In Proceedings of the Thirteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc
’12, pages 145–154, NY, USA, 2012.

[59] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzel-
man. Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture. In IEEE Symposium on
Computers and Communications, pages 59–66, 2012.

[60] N. Sultan. Cloud computing: A democratizing force? International
Journal of Information Management, 33(5):810 – 815, 2013.

[61] The Wi-Fi Alliance. Wi-Fi Direct, 2013.
[62] R. van Nieuwpoort, J. Maassen, G. Wrzesińska, R. F. H. Hofman,

C. J. H. Jacobs, T. Kielmann, and H. E. Bal. Ibis: A flexible
and efficient java-based grid programming environment: Research
articles. Concurr. Comput. : Pract. Exper., 17(7-8):1079–1107, June
2005.

[63] R. V. Van Nieuwpoort, G. Wrzesińska, C. J. H. Jacobs, and H. E.
Bal. Satin: A high-level and efficient grid programming model.
ACM Trans. Program. Lang. Syst., 32:9:1–9:39, March 2010.

[64] Ti. Yan, V. Kumar, and D. Ganesan. CrowdSearch: exploiting
crowds for accurate real-time image search on mobile phones. In
Proc. of the 8th int’l conference on Mobile systems, applications, and
services, MobiSys, pages 77–90. ACM, 2010.

[65] O. F. Zaidan and C. Callison-Burch. Crowdsourcing translation:
Professional quality from non-professionals. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 1220–1229. Associa-
tion for Computational Linguistics, 2011.

Niroshinie Fernando is a Post-doctoral Research Fellow at the De-
partment of Computer Science & Software Engineering at Swinburne
University of Technology, Australia. Her research interests include mo-
bile cloud computing, crowdsourcing, social machines, smart cities and
IoT. She completed her Ph.D. at La Trobe University, Australia and her
B.Sc.(Hons) at University of Colombo, Sri Lanka.

Seng W. Loke is a Reader and Associate Professor at the Department
of Computer Science and Information Technology in La Trobe University.
He leads the Pervasive Computing Interest Group at La Trobe. He has
(co-)authored more than 220 research publications including numerous
works on context-aware computing, and mobile and pervasive comput-
ing. He has been on the program committee of numerous conferences/-
workshops in the area, including Pervasive 2008. He completed his
Ph.D. at the University of Melbourne.

Wenny Rahayu is a Professor at the Department of Computer Science
and Information Technology, La Trobe University, Australia. Her research
areas cover a wide range of advanced databases topics including Spa-
tial and Temporal Databases, XML Databases, Data Warehousing, and
Semantic Web and Ontology. To date, she has supervised to completion
10 Ph.D. graduates, and is currently leading a number of collaborative
research and industry sponsored projects in the above areas.

