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ABSTRACT ASteel Plate RollingMill (SPM) is a millingmachine that uses rollers to press hot slab inputs to
produce ferrous or non-ferrous metal plates. To produce high-quality steel plates, it is important to precisely
detect and sense values of manufacturing factors including plate thickness and roll force in each rolling pass.
For example, the estimation or prediction of the in-process thickness is utilized to select the control values
(e.g., roll gap) in the next pass of rolling. However, adverse manufacturing conditions can interfere with
accurate detection for such manufacturing factors. Although the state-of-the-art gamma-ray camera can be
used for measuring the thickness, the outputs from it are influenced by adverse manufacturing conditions
such as the high temperature of plates, followed by the evaporation of lubricant water. Thus, it is inevitable
that there is noise in the thickness estimation. Furthermore, installing such thickness measurements for each
passing step is costly. The precision of the thickness estimation, therefore, significantly affects the cost and
quality of the final product. In this paper, we present machine learning (ML) technologies and models that
can be used to predict the in-process thickness in the SPM operation, so that the measurement cost for the in-
process thickness can be significantly reduced and high-quality steel plate production can be possible. To do
so, we investigate most-known technologies in this application. In particular, Data Clustering basedMachine
Learning (DC-ML), combining clustering algorithms and supervised learning algorithms, is introduced.
To evaluate DC-ML, two experiments are conducted and show that DC-ML is well suited to the prediction
problems in the SPM operation. In addition, the source code of DC-ML is provided for the future study of
machine learning researchers.

INDEX TERMS Intelligent manufacturing systems, machine learning, regression analysis, steel industry,
thickness control.

I. INTRODUCTION
As the fourth industrial revolution, called Industry 4.0,
becomes more pervasive, contemporary manufacturing also
becomes smarter using state-of-the-art technologies such as
artificial intelligence, cloud computing, internet of things,
cyber-physical systems, and big data. These technologies
make smart manufacturing [1]–[12] radically feasible. In this
paper, we introduce an application of ML technologies in a
steel plate production smart factory.

The associate editor coordinating the review of this manuscript and

approving it for publication was Berdakh Abibullaev .

In a steel plate factory line, the input of the line is a slab
made by continuous casting of molten steel and the output
of the line is a steel plate. And the steel plate is produced
by a special facility, a Steel Plate Rolling Mill (SPM). The
rolling process is a metal forming process in which a slab is
passed through a set of rolls in order to uniformly reduce the
thickness of the slab by handling the gap of rolls. To produce
high-quality steel plates, it is important to precisely detect
and sense values of manufacturing factors such as roll gap,
roll force, and temperature. However, environmental factors
such as high temperature can hinder accurate value detection
for manufacturing factors (e.g., the thickness of a steel plate
when passing through the SPM). In a steel plate factory
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FIGURE 1. Actual thickness vs predicted thickness.

line, the estimation of the in-process thickness is utilized to
select the control values (e.g., roll gap) for the next pass.
The precision of the thickness estimation, therefore, can sig-
nificantly affect the final product. Although a gamma-ray
camera can be used, the outputs from it can be influenced by
adverse manufacturing conditions such as high temperature
of plates and followed evaporation of lubricant water. Thus,
it is inevitable that there is noise in the thickness estimation
using such thickness measuring sensors. Furthermore, the use
of such sensors causes another production cost.

In this paper, we introduce machine learning approaches
predicting manufacturing factors to support existing SPM
control systems. Figure 1 shows one illustrative example of
the problem in this paper. Over the number of rolling passes
(x-axis), the SPM control systems require the high precision
for value estimation of manufacturing factors to produce the
required thickness (y-axis) of the plate in the next rolling
step. To do so, the measured manufacturing data from sensors
are used to predict the next thickness of the plate. For high-
quality production, the prediction for the next thickness (the
dashed line) should be as close as possible to the actual value
(the solid line).

Specifically, this paper introduces four existing machine
learning approaches and one novel machine learning algo-
rithm in order to support the SPM control systems. One of
traditional SPM control systems is Automatic Gauge Control
(AGC) in steel plate production. AGC has been successfully
applied to commercial rolling mill system to select required
control values. Usually, the conventional AGC systems are
based on Proportional Integral Derivative (PID) controller
[13]–[15], a feedback-loop mechanism adjusting control val-
ues to address target values. Such PID controllers are widely
used in industrial control systems (e.g., temperature control,
flow control, pneumatic control, and compressor control),
including AGC systems. For example, Zhang et al. [16] intro-
duced a generalized predictive control algorithm, evolved
from the existing control algorithms for hydraulic AGC. They
used a simulation for evaluation and showed an improved

thickness precision of strips. Karandaev et al. [17] applied a
transfer function to an AGC control model in order to address
the control error of the existing AGC, so that they could
reduce gauge deviations. Zhang and Ding [18] introduced
a strategy of the AGC control to improve the final product
quality. The control limitations of the conventional AGC
control under compound disturbancewere addressed by using
such a control strategy that could remove rolling uncertainty
in the AGC operation. However, to develop a PID-based
AGC, the mathematical models are required and designed by
subject-matter experts (SME). Furthermore, designing such
mathematical models is not practicable, when considering
a lot of manufacturing factors. Consequently, simple PID
models have been developed. Another drawback of PID con-
trollers is that it is not easy to deal with the complex non-
linearity [19]. To overcome these limitations of the conven-
tional AGC controllers, self-adjusting AGC systems, devel-
oping control models automatically, have been researched
and developed. For example, Fuzzy Logic [20] based control
systems were presented. The fuzzy control systems have
several advantages such as human understandable model, fast
and easy implementation, ability to deal with non-linearity,
and so on. Wang et al. [21] utilized a fuzzy control system
to perform self-adjusted PID controller in an AGC system.
The stimulation results of the paper showed that the proposed
fuzzy system outperformed conventional PID systems. How-
ever, because such fuzzy systems are based on various domain
assumptions and human interventions, the reasoning results
can be inaccurate. In addition, it is not trivial to design fuzzy
rules by SME (i.e., dependent on the domain knowledge
level).

As another example of the self-adjusting AGC systems,
some researchers have focused on the prediction of a roll
force value. One critical factor of designing a conven-
tional control model of the AGC systems is the roll force.
Selecting a precise roll force value for each rolling pro-
cess affects the quality of thickness reduction of a steel
plate [22]. In this research domain,Artificial Neural Networks
(ANN) were used to predict the roll force value [23]–[29].
Lee and Choi [23] applied ANN to roll force prediction. Their
results showed the 30% improvement of the final product
quality. Zhang et al. [24] combined differential evolutionwith
ANN. The prediction error of the proposed approach was
less than 5%. Rath et al. [25] applied ANN for prediction
of roll force. They used a feed forward network as an ANN
architecture and a back propagation algorithm. A conjugate
gradient optimization of the loss function is used for network
training. The prediction accuracy of the trainedmodel was the
R-squared value of about 0.94. Bagheripoor and Bisadi [26]
applied ANN and used the similar feed forward network
and back propagation algorithm. The prediction accuracy of
the trained model was the R-squared value of about 0.979.
Wang et al. [27] used an ANN for the bending force predic-
tion in a hot strip rolling. They suggested the ANN archi-
tecture which was optimized by a genetic algorithm and
Bayesian regulation. The prediction accuracy of the proposed
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architecture was the R-squared value of 0.956. Liu et al. [28]
applied a genetic algorithm (GA), particle swarm optimiza-
tion algorithm (PSO), and multiple hidden layer extreme
learning machine (MELM) for their model. They used GA
to determine the optimal number of hidden layers and the
optimal number of hidden nodes. PSO was used to search
for the optimal input weights and biases. Esendağ et al. [29]
used ANN and conventional regression models (e.g., Support
Vector Machines) to predict reversible cold rolling process
parameters. They reported the roll force prediction accuracy
for the ANN as the R-squared value of 0.939 and the regres-
sion model as the R-squared value of 0.947.

In this paper, severalML algorithms are used to predict two
main parameters of the SPM control systems. One is the roll
force, because the plate thickness can be directly calculated
by using the roll force value. Another is the plate thickness
at each rolling pass, so that we can find the best control
conditions without an expensive sensor (e.g., the gamma-ray
camera) and its operational cost. Furthermore, high-quality
plate production of the SPM control systems can be achieved.
Specifically, four well-known ML regression models are uti-
lized for these two predictions.

(1) Random Forest Regression (RF)
(2) Gradient Boosting Regression (GB)
(3) Gaussian Process Regression (GP)
(4) Conditional Linear Gaussian (CG)

In addition, this paper introduces Data Clustering based
Machine Learning (DC-ML). DC-ML is based on an idea
in which training data for machine learning are classified
into a set of data by clustering and then each data of the set
are learned by supervised learning, including regression and
classification.

There are similar studies regarding data clustering based
machine learning. Wang et al. [30] introduced clustering-
based Kriging, or Gaussian Process Regression [31], to solve
the problem of Efficient Global Optimization (EGO). Kriging
has the advantage of learning a complex function. However,
when it is required to be processed with large data, a problem
arises in computing large matrix multiplication. To solve such
a big data problem, the paper introduced how to combine a
clustering algorithm with Kriging for EGO. Qiang et al. [32]
presented an algorithm regarding a clustering-based artificial
neural network. In the initial step of the algorithm, many
neural networks are trained. And then these networks are
divided into clusters using K-means clustering [33] according
to the output results of each network. The most accurate one
network in each cluster is selected to be used for inference.

These previous studies focused on the specific clustering
and classification algorithm (i.e., Kriging and artificial neural
network). In this paper, we introduce a general algorithm
in terms of data clustering based machine learning. The
presented algorithm utilizes existing clustering and super-
vised learning algorithms to make a group of clustering
and supervised learning models. For a performance analysis,
two experiments are conducted and show that the presented

DC-ML is well suited to the prediction problems in the SPM
control systems and outperforms the above four regression
models (RF, GB, GP, and CG).

This paper contributes to three research agendas: (1) sug-
gest DC-ML in the application of SPM, (2) provide the source
code for DC-ML, and (3) introduce the experiment results
using the real-world data from a steel plate rolling smart
factory.

The remainder of the paper is organized as follows.
Section 2 introduces background knowledge on the con-
cept of SPM, the basic theory of thickness reduction
of SPM, and the machine learning algorithms used in
this paper. Section 3 suggests the algorithm of DC-ML.
Section 4 presents the experiments regarding roll force and
plate thickness prediction in SPM. Section 5 discusses the
experiment results in terms of prediction accuracy. The final
section presents conclusions and future research directions.

II. BACKGROUND
In this section, we introduce the concept of the rolling mill
process, the basic theory of thickness reduction, and machine
learning technologies regarding regression. This prerequisite
knowledge will be the basis of the methodology introduced
in Section 3.

A. RESEARCH TARGET SYSTEM
The steel plate factory process usually contains seven steps
to produce a steel plate using a slab: (1) Reheating Furnace,
(2) Hot Scale Breaker, (3) Input Size Measure, (4) Rolling
Mill Stand, (5) Output SizeMeasure, (6) Cooling, and (7) Hot
Leveler. The steel plate smart factory in this paper has only
one rolling mill stand, which performs multiple reciprocating
pass operations to enlarge the width and/or length of the steel
plate, and reduce the thickness of it to achieve the desired tar-
get size. In this paper, the target rolling mill system is a four-
high reciprocating rolling mill stand. The specification of this
machine includes 8,000 tons of rolling capacity, 4 meters of
rolling width, and 5m/sec of rolling speed. It is equipped with
the pair-cross automatic gauge control system.

B. BASIC THEORY OF THICKNESS REDUCTION BY
ROLLING MILL OPERATION
The rolling process is a metal forming process in which a
slab is passed through a set of rolls to uniformly reduce the
thickness of the slab by handling the gap of rolls. Equation 1
represents the relation of the output thickness Th and the roll
gap SD under ideal conditions.

Th(i+ 1) = SD, (1)

where SD denotes ScrewDown of mill (simply, Roll Gap) and
i denotes the rolling pass number.

That is, when a thick plate Th(i) is input to the roll
from the left side (Figure 2), the plate with reduced thick-
ness Th(i + 1) by the roll gap SD is output to the right
side.
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FIGURE 2. Thickness reduction concept by rolling.

1) PROBLEM OF THICKNESS CONTROL IN ROLLING
The concept of the rolling process is simple, however precise
thickness control is not trivial, because of the various noise
factors like vertical expansion movement of roll, shape defor-
mation (roll crown), temperature interaction factor, and so on.
The following introduces some explanation of major noise
factors which should be considered in the rolling process.

• Vertical Expansion Movement of Roll

As shown in Figure 2, the vertical expansion (VE)
movement of roll occurs due to the material repul-
sion force (Roll Force) for the thickness reduction in
the rolling process. The vertical expansion should be
reflected when setting the roll gap in order to meet the
target thickness of the output plate. The value of VE can
be obtained by dividing the value of roll force by Mill
Modulus (MM). And also, the value of roll force can
be obtained by the high temperature strength, thickness
reduction rate, width of the rolling plate, and rolling
speed. In addition, when setting the roll gap, it should
be considered that the value of MM is slightly changed
by the width of the plate.

• Shape Deformation of Roll

The original convex cylinder form of the roll (roll crown)
can be flattened due to abrasion, as rolling quanti-
ties increase. Such a shape deformation also should be
reflected, when setting the roll gap.

• Rolling Temperature

Under the rolling mill operation, the temperature
directly contacted with the plate can rise and the roll
can be expanded due to the heat of the rolling plate.
And the plate is shrunk due to cool down from high

rolling temperature. This thermal expansion of the roll
and cooling shrink of the plate should be reflected, when
setting the roll gap.

• Plate Dimension

During rolling the input plate, the thickness and width
especially vary for each rolling pass. The difference of
such dimensions causes the different mill modulus and
roll force, and eventually leads to a different roll gap.

• Other Noise Factors

In addition to the above major noise factors, Roberts
[34] introduced more factors like the coefficient of fric-
tion, work-roll diameter, and rolling speed related to the
mathematical models for predicting the roll force. Such
factors associated with the roll force are also related to
the thickness of the plate. Gingzburg and Ballas [35]
suggested that the disturbances, affecting gauge perfor-
mance in rolling mills, can be caused by various sources.
Table 1 summarizes these noise factors.

2) EQUATION FOR THE OUTPUT THICKNESS
In the previous subsection, the basic Equation 1 was only
associated with the roll gap SD. Equation 2 represents the
relationship between the output thickness and roll gap under
the various noise conditions [36], [37] [38].

Th(i+ 1) = (SD+
RLF
MM
− S)× TF, (2)

where RLF denotes the roll force,MM denotes the mill mod-
ulus which includes compensation for the plate width varia-
tion, S denotes the adjustment of the roll gap which includes
compensation for thickness variation, strength variation and
others, and TF denotes the thermal shrinkage compensation
factor. Details can be found in [36], [37] [38]. Equation 2 is
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TABLE 1. Main factors affecting gauge performance in rolling mills [35].

used for the basis of developing a causal model introduced in
Subsection 4.B.

C. REGRESSION IN MACHINE LEARNING
A Regression model is used to predict a continuous response
f (X ), or a target variable, using predictor variables X =
{x1, x2, . . . , xn}. This paper uses four well-known regres-
sion models: (1) Random Forest Regression, (2) Gradient
Boosting Regression, (3) Gaussian Process Regression, and
(4) Conditional Linear Gaussian. Random Forest Regression
can handle large data, missing data, and many variables.
However, for unseen data, it can not predict a continuous
change precisely. Also, it can be over-fitted for noisy data
and the learned model from Random Forest Regression is
difficult to be interpreted. Gradient Boosting Regression is
prone to over-fitting, so it requires careful hyperparameter
tuning, when performingmachine learning. Gaussian Process
Regression is a promising model in regression. It can predict
continuous change in nonlinear regression. However, it is not
suitable for large data [39]. Conditional Linear Gaussian is a
simple and human editable model that allows subject-matter
experts to modify it. However, it is a linear model. In this
subsection, these four models are briefly introduced.

1) RANDOM FOREST REGRESSION
A set of ML models can often have a better performance
than the use of a single ML model. Such an integration of
ML models is called ensemble learning. Random Forest [40]
uses the ensemble learning by forming a set of decision trees
(e.g., Classification and Regression Tree, CART [41]) and
resulting in an output which is averaged over outputs from
the decision trees. Random Forest draws random samples
from training data and creates a decision tree model from
the sample data, so that it can have a set of decision trees

(i.e., forest). After machine learning, in the predic-
tion or application stage, the mean value of the outputs of
all decision trees is yielded as the final result. Equation 3
shows an equation for the averaging outputs from the set of
the learned decision trees.

ŷ = Mean{a1(x), a2(x), . . . , an(x)}, (3)

where ai(x) is a single decision tree and the functionMean(.)
yields the average value using the outputs from the set of the
decision trees.

2) GRADIENT BOOSTING REGRESSION
Gradient Boosting [42] uses an ensemble model consisting
of a set of simple models (e.g., a decision tree stump, a tree
containing only one root and its immediately connected leaf
nodes). By adding such simple models, the result ensemble
model can be sequentially improved and finally fitted to data.
In other words, after applying a simple model, samples which
are classified by it are reused to another simple model. And
then this process is repeated until convergence (or achieving
better predictive performance). Gradient Boosting is a gener-
alized method of boosting (e.g., [43], [44]) by using gradient
of a loss function.

3) GAUSSIAN PROCESS REGRESSION
Gaussian Process is composed of a set of Gaussian random
variables, specified by a mean and covariance (or kernel)
function. Equation 4 formally shows Gaussian Process [45].

P(F(x)|D, x) = N (µ(x), σ 2(x)), (4)

where D denotes an observed data {x1:n,F(x1:n)}, x denotes
an independent value for F(.), N (., .) denotes a normal distri-
bution, µ(.) denotes a mean function of x, and σ 2(.) denotes
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a variance function of x. These µ(.) and σ 2(.) are shown in
Equations 5 and 6, respectively.

µ(x) = kTK−1F(x1:n) (5)

and

σ 2(x) = k(x, x)− kTK−1k, (6)

where k = [k(x, x1), k(x, x2), . . . , k(x, xn)] denotes a set
of kernel functions k(., .) and K denotes a kernel matrix as
shown by Equation 7.

K =

k(x1, x1) . . . k(x1, xn)
. . . . . . . . .

k(xn, x1) . . . k(xn, xn)

 (7)

Using Equations 5 and 6, it is straightforward to compute
Gaussian Process in Equation 4.

4) CONDITIONAL LINEAR GAUSSIAN BAYESIAN NETWORK
FOR REGRESSION
Conditional Linear Gaussian (CLG) Bayesian Network (BN)
(CLG-BN) [46] can be used for the regression problem in this
paper. Also, CLG-BN can be used to estimate the posterior
probability distribution for the target variable using various
reasoning algorithms [47]–[49]. Parameters in conditional
linear Gaussian distribution can be estimated by using an
extension of multiple-regression.

In CLG-BN, we assume that X is a continuous node with n
continuous parents U1, . . ., Un and m discrete parents A1, . . .,
Am, then the conditional distribution p(X | u, a) given parent
states U = u and A = a has the following form:

p(X |u, a) = N (L(a)(u), σ (a)), (8)

where L(a)(u) = m(a)
+ b1(a)u1 + . . .+ bn(a)un is a linear

function of the continuous parents, with intercept m(a), coef-
ficients bi(a), and standard deviation σ (a) that depends on the
state a of the discrete parents.

Given a discrete parent state aj, estimating the parame-
ters (i.e., the intercept m(aj), coefficients bi(aj), and standard
deviation σ (aj)) is required. Equation 9 shows multiple lin-
ear regression which is modified from [50]. L(a)(u) can be
rewritten, if we suppose that there are k observations (or data)
(Note that in the following, we can omit the state a, because
we know it).

Li(u) = m+ b1ui1 + . . .+ bnuin + σi, i = 1, . . . , k, (9)

where i indexes the observations. For convenience, we can
write Equation 9 more compactly using matrix notation:

l = Ub+ σ , (10)

where l denotes a vector of instances for the observations,
U denotes a matrix containing all continuous parents in the
observations, b denotes a vector containing an intercept m
and a set of coefficients bi, and σ denotes a vector of regres-
sion residuals. Equation 11 show these variables in forms of

FIGURE 3. A machine learning model family.

vectors and a matrix.

l =


L1(u)
L1(u)
. . .

L1(u)

U =


1 u11 . . . u1n
1 u21 . . . u2n
. . . . . . . . . . . .

1 uk1 . . . ukn

b =


m
b1
. . .

bk

 σ =


σ1
σ2
. . .

σk


(11)

From the above settings, we can derive an optimal vector for
the intercept and the set of coefficients b̂

b̂ = (UTU)-1UTl, (12)

Also, we can derive the optimal standard deviation σ̂ from
the above linear algebra term [50].

σ̂ =

√
(l− Ub̂)T(l− Ub̂)

k − n− 1
(13)

In summary, using observation (or data) U, Equation 12,
and Equation 13, we can simply form Equation 10 and
Equation 9. In this paper, we used a probabilistic graphical
modeling package, called UnBBayes [51], which contains a
CLG-BN machine learning algorithm [52].

III. DATA CLUSTERING BASED MACHINE LEARNING
In this section, we introduce Data Clustering based Machine
Learning (DC-ML). In supervised learning, the training data
consist of data for predictor variables (e.g., X variables) and
data for a target variable (e.g., a Y variable). The data for the
predictor variables may or may not be classified as several
clusters. If the data clusters exist, we can imply that there are
several corresponding forces promoting such clusters. These
forces may differently influence the target variable. If that
is the case, separating data according to the clusters would
be better than using all data for supervised learning. In this
case, each clustered data is used to learn a corresponding
supervised learningmodel. Consequently, amachine learning
model family or ML model family, containing a set of ML
models, is constructed (Figure 3).

Figure 3 shows an illustrative example of an ML model
family. The ML model family contains a high-scored clus-
tering model consisting of M clusters. The high-scored clus-
tering or supervised learning model used herein refers to
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the model which is selected by the highest score against
other candidate models. The score (e.g., R-Squared Score and
Mean Absolute Error) can be determined by an analysis goal.
Each cluster is associated with a corresponding high-scored
supervised learning model (a regression model or classifica-
tion model). Such an ML model family is learned by DC-ML
as shown by Figure III. Figure III illustrates three main func-
tions: (1) Perform DC-ML, (2) Perform Clustering (CL) and
Split Data according to Clusters, and (3) Perform Supervised
Learning (SL). The first step of DC-ML starts with training
data. Several clustering algorithms are independently used to
data clustering and generate clustering models from 1 to L.
Each clustering model contains clusters by which the training
data are split into clustered data from 1 to M. Each clustered
data are used to perform supervised learning. By supervised
learning, SL models from 1 to N are output. Several ML
model families containing clustering models and SL models
are generated by this process and then one high-scored ML
model family is selected as the output of DC-ML. After the
high-scoredMLmodel family is learned by DC-ML, it can be
used for prediction. Figure 5 illustrates two main functions of
the DC-ML prediction: (1) Select an SL Model according to
Data Clusters and (2) Perform Prediction. The first step of
prediction starts with data. The clustering model in the ML
model family is utilized to select an SL model using the given
data. The given data are reused to predict a target value by
using the selected SL model.

In Algorithm 1, DC-ML is described in more detail.
DC-ML has five inputs. The first input DX is the training
data set for predictor variables. The second input DY is the
training data set for a target variable. The third input C is
the set of clustering algorithms (e.g., Gaussian Mixture [53],
Birch [54], andMini Batch K-Means [33]). The input of each
clustering algorithm contains a set of candidate hyperparam-
eters (e.g.,Gaussian Mixture algorithms associated with 2, 3,
4, and 5 clusters, respectively). The fourth input S is the set of
supervised learning algorithms (e.g., Random Forest Regres-
sion, Gradient Boosting Regression, and Gaussian Process
Regression). The supervised learning algorithm can also take
the candidate hyperparameters. The fifth input V is the set of
clustering variables. For clustering, it is not necessary that
all the variables for the training data are used. The clustering
variables means the variables that are selected to be used
for clustering. Given these inputs, Algorithm 1 proceeds as
follows:
Line 1 The algorithm starts with the function Run(.).
Line 2 The function Run(.) iterates the function Perform

Clustering(.) in parallel. To do that, an index i is taken
from 1 to the number of clustering algorithms in C.

Line 3 The i-th clustering algorithm Ci is taken from the set
of clustering algorithms C.

Line 4 The i-th ML model family Fi is created to be used
as a result repository. For example, clustering models
and supervised learning models are stored in the i-th ML
model family.

Line 5 The function Perform Clustering(.) is executed. Note
that Line 6 is explained after the explanation of the sub-
functions in Algorithm 1.

Line 8 The function Perform Clustering(.) aims to set a clus-
tering hyperparameter (i.e., the number of clusters) to
each clustering algorithm.

Line 9 This function iterates the function Perform Clus-
tering(CL) Algorithm(Alg)(.) in parallel. To do that,
an index j is taken from 1 to the number of the set of
hyperparameters H in the i-th clustering algorithm Ci.
The index j denotes a hyperparameter used in the CL
algorithm.

Line 10 The i-th CL algorithm is set with the hyperparameter
Hj.

Line 11 The function Perform Cl Alg(.) is executed.
Line 14 The function Perform Cl Alg(.) aims to execute

each clustering algorithm and prepare for the supervised
learning algorithms.

Line 15 This function executes the clustering algorithm Ci, j
using the training data DX corresponding to the clus-
tering variables V. Note that the training data which is
not included in the clustering variables is ignored. The
clustering model CMi, j, then, is resulted from it.

Line 16 The clustering model CMi, j is assigned to the ML
model family Fi, j.

Line 17 The clustered data CDXY are taken fromDX andDY
using the clustering model CMi, j.

Line 18 This function iterates the function Perform Super-
vised Learning(.) in parallel. To do that, an index k is
taken from 1 to the number of clustered data CDXY . The
index k denotes the k-th clustered data in the clustered
data CDXY .

Line 19 The k-th clustered data are taken from the clustered
data CDXY .

Line 20 The function Supervised Learning(.) is executed.
Line 23 The function Supervised Learning(.) aims to exe-

cute each supervised learning (SL) algorithm and return
the evaluation score of a learned SL model.

Line 24 This function iterates in parallel from 1 to the set of
supervised learning algorithms S. The index l denotes
the l-th SL algorithm.

Line 25 The l-th SL algorithm is taken from the set of super-
vised learning algorithms S.

Line 26 The k-th clustered data are used to be split into the
training data TDXY , k and the validation data VDXY , k
using the K-Fold Cross-Validation (e.g., K = 5). The
training data are used for machine learning, while the
validation data are used for evaluation of a learned
machine learning model.

Line 27 The l-th SL algorithm is executed using the training
data TDXY , k . The SL model SMl is, then, generated.

Line 28 The SL model SMl is used for prediction using
the validation data VDXY , k . The l-th prediction aver-
age score from the cross validation is stored. For
this validation, various performance evaluation metrics
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FIGURE 4. Concept of data clustering based machine learning (DC-ML).

FIGURE 5. Prediction using an ML model family.

(e.g., R-Squared Score and Mean Square Error) can be
used.

Line 29 The high-scored SL model Fi, j, k* is selected using
the set of the prediction average scores.

Line 30 The high-scored SLmodel Fi, j, k* is stored in the set
of the high-scored SL models Fi, j,K * .

Line 22 The average score for the high-scored SL models in
Fi, j,K * is calculated. It is, then, assigned to Fi, j, avg.

Line 23 The average score Fi, j, avg is stored in the set of the
average scores Fi, J , avg.

Line 12 The high-scored clustering model which has the
j*-th hyperparameter is selected and it is assigned to
Fi, j* .

Line 13 The average score Fi, j*, avg of the high-scored clus-
tering model Fi, j* is stored in the set of the average
scores FI , j*, avg.

Line 6 The high-scored i-th clustering model is selected
using the set of the average scores FI , j*, avg.

Line 7 This algorithm outputs the high-scored ML model
family Fi*, j*,K * containing the high-scored i*-th clus-
tering model with the j*-th hyperparameter and the set
of high-scored SL models K *.

We consider the time complexity of this algorithm in terms
of the Big O. In this analysis, the time complexity of each
machine learning algorithm is excluded, because it is beyond
the scope of this research. In the algorithm, there exist four
iterations (i.e., Lines 2, 9, 18, and 24), so the time complex-
ity is O(|C|×|Ci.H|×|CDXY |×|S|), where C denotes the set

of clustering algorithms, Ci.H denotes the set of hyperpa-
rameters of the i-th clustering algorithm, CDXY denotes the
clustered data, and S denotes the set of supervised learning
algorithms. It seems like this is the computationally expensive
operation. For example, for three clustering algorithms, three
hyperparameters for each clustering algorithm, two clustered
data, and three supervised learning algorithms, 54 processing
tasks in total are required. However these iterations can be
parallelizable, so in practice, actual operating time can be
significantly reduced by using multithreading and/or mul-
tiprocessing. For example, if there are 54 multiprocessors,
the total computing time can be the sum of the maximum
processing times of a clustering algorithm and a supervised
learning algorithm.

In addition, this paper presents a DC-ML software
that was implemented in the Python programming lan-
guage. The most recent version of the DC-ML soft-
ware is available online at the DC-ML GitHub repository
(https://github.com/pcyoung75/DC-ML).

IV. EXPERIMENTS IN THE SPM
In this section, we introduce two experiments to evaluate the
predictive accuracy of the DC-ML algorithm. In this paper,
the predictive accuracy means how correctly the models
learned by the ML algorithms are mapped to a test data set.
Specifically, a coefficient of determination (see Equation 14)
is used for comparison betweenMLmodels. The experiments
aim to find high-scored ML models for roll force and plate
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TABLE 2. Selected variables in the real data.

thickness predictions in each rolling pass using four existing
ML algorithms (Gradient Boosting Regression (GB), Ran-
dom Forest Regression (RF), Gaussian Process Regression
(GP) and, CLG-BN (CG)) and the DC-ML algorithm.

For these two experiments, we performed four steps: (1)
acquiring real data, (2) developing a causal model, (3) per-
forming machine learning, and (4) testing the prediction.
In the acquiring real data step, the real data for machine
learning are collected from a target factory. In the causal
model development step, a causal model, representing causal
relationships between variables, is defined regarding the steel
plate rolling factory. Such a causal model enables machine
learning engineers to select a best structure (including fea-
tures) of ML models. In the machine learning step, candidate
ML models are trained using ML algorithms (including DC-
ML) and the training data set from the target factory. In the
test step, the learned ML models are evaluated using the test
data set. Specifically, the roll force and plate thickness in each
rolling pass (e.g., PS1,PS2, . . . ,PSN ) are predicted and then
evaluated in terms of the accuracy.

The following subsection introduces each step of the
experiment in detail. This experiment was performed on a
3.50GHz Intel Core i7-5930K processor with a 96 GB mem-
ory. Through these experiments, we determined two high-
scored ML models that can be utilized in the operation of the
SPM control systems.

A. ACQUIRING REAL DATA
The target factory contains several sensors and actuators to
operate the rolling mill and other facilities (e.g., reheating

furnaces and hot levelers). Factory data from these facilities
are stored in real time on a main computer. For this research,
some sample data, containing 4334 pass data cases, were
used. Each pass data contained several sensor and actuator
parameters (e.g., roll force, roll gap, and temperature) and
their values. These parameters can be found in Table 2. For
example, a plate production is scheduled with 18 rolling
passes in which each rolling pass data are generated in the
rolling mill operation (i.e., 18 pass data for one plate pro-
duction). The last pass data contain the specification of the
final results (e.g., the final production thickness of the plate).
For each rolling pass, the values of these parameters were
distributed in various ranges. For example, the input thick-
ness of a plate before the rolling mill operation was around
272millimeters, while the output thickness after the operation
was around 17 millimeters.

B. DEVELOPING A CAUSAL MODEL FOR THE STEEL PLATE
ROLLING FACTORY
Based on theoretical analysis of the thickness reduction pro-
cess by rolling mills (see Subsections 2.A and 2.B), a causal
model was developed by subject-matter experts in terms of
a SPM control system, managing control values for a SPM.
The causal model was used to identify main features and
relationships between such features, so that machine learning
engineers in this research comprehensively could understand
the domain problem and situation, and could develop seam-
lessly machine learning models. Also, for machine learning,
the causal model was used for feature engineering, in which
features of data were selected. Usually, machine learning
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Algorithm 1 Data Clustering based ML
Input: A training data set for predictor variables DX
Input: A training data set for a target variable DY
Input: A set of clustering algorithms C
Input: A set of supervised learning algorithms S
Input: A set of clustering variables V
Output: A high-scored ML model family Fi*, j*,K *

1 Function Run (DX , DY , C, S, V)
2 do in parallel for i← 1 to |C|
3 Ci← have i-th clustering algorithm from C
4 Fi← create an empty i-th ML model family
5 Perform Clustering (DX , DY , Ci, Fi, S, V)

6 Fi* ← select the high-scored i-th clustering model using
the average scores FI , j*, avg (see Line 13)

7 return Fi*, j*,K *

8 Function Perform Clustering (DX , DY , Ci, Fi, S, V)
9 do in parallel for j← 1 to |Ci.H|

10 Ci, j← set i-th clustering algorithm Ci with a candi-
date hyperparameter Hj

11 Perform CL Alg (DX , DY , Ci, j, Fi, j, S)

12 Fi, j* ← select the high-scored i-th clustering model with
the j* hyperparameter using the average scores Fi, J , avg
(see Line 23)

13 FI , j*, avg← FI , j*, avg ∪ {Fi, j*, avg}

14 Function Perform CL Alg (DX , DY , Ci, j, Fi, j, S, V)
15 CMi, j← execute the clustering algorithm Ci, j using the

training dataDX associated with the variablesV to get the
clustering model CMi, j

16 Fi, j← CMi, j
17 CDXY ← get the clustered data CDXY from DX and DY

using the clustering model CMi, j
18 do in parallel for k ← 1 to |CDXY |
19 CDXY , k ← have k-th clustered data from CDXY
20 Perform Supervised Learning (CDXY , k , Fi, j, k , S)

21 Fi, j, avg← calculate the average score for the SL models
in Fi, j,K * and store it into Fi, j, avg

22 Fi, J , avg← Fi, J , avg ∪ {Fi, j, avg}

23 Function Perform Supervised Learning (CDXY , k , Fi, j, k , S)
24 do in parallel for l ← 1 to |S|
25 Sl ← have l-th SL algorithm from S
26 TDXY , k , VDXY , k ← perform the K-Fold split to

get the training data TDXY , k and the validation data
VDXY , k from CDXY , k ;

27 SMl← perform the SL algorithm Sl using TDXY , k to
get the SL model SMl

28 avgScorel ← perform the prediction using SMl and
VDXY , k to get an l-th average score

29 Fi, j, k* ← find the high-scored SL model using the set of
scores avgScore and put it into Fi, j, k*

30 Fi, j,K * ← Fi, j,K * ∪ {Fi, j, k*}

engineers lack the domain knowledge to which they are
assigned. The subject-matter experts also do not have much
knowledge about machine learning algorithms. The causal
model could help both experts to understand the target sit-
uation and develop the ML models.

There were a number of factors (i.e., predictor variables)
that might have affected the plate thickness and the roll force
(i.e., target variables). However, some predictor variables can
be negligible, because of redundancy and small influence to
the target variables. For this, we selected candidate control
and noise factors of the SPM control system, and determined
the relationships between these factors using the theory of the
rolling process in Subsection 2.B.

Figure 6 shows the causal model in this paper. This causal
model was developed in terms of Plate Thickness and its
causal factors (e.g., Mill Modulus and Temperature). For
the SPM control system, the first-order control factors are
Roll Gap and Roll Gap Adjustment, while the first-order
noise factors are Mill Modulus and Roll Force. The causal
model shows also the second and third-order noise factors for
the SPM control system. In addition, there are two factors,
represented by the dashed boxes (i.e., Material Strength at
rolling temperature and Quantity of material deformation by
rolling), for which corresponding data do not exist. These two
factors are included in the causal model, because by doing
this, hidden factors can be displayed more explicitly.

Table 2 shows all the features (or variables) used in this
paper. The total 16 features were identified through this step.
For example, Plate Thickness in Table 2 is the thickness of
a plate measured by a laser. Planned Plate Thickness is the
planned target thickness of a plate after each rolling.

C. PERFORMING MACHINE LEARNING
Initially, we considered various machine learning algorithms
(e.g., decision tree, support vector machine, and deep learn-
ing), however since they did not result in any noticeably better
performance compared to the results from the four algorithms
in Subsection 2.C, we did not include them in this experiment.
For the roll force and plate thickness predictions, the four
algorithms in Subsection 2.C and the DC-ML algorithm in
Subsection 3 were used to learn each ML model of the
corresponding ML algorithm.

To perform these ML algorithms, identifying predictor
variables and target variables was required. From the causal
model in Figure 6, the predictor variables and the target vari-
ables were identified by the subject-matter experts. Table 3
shows the variables for the roll force prediction, while Table 4
shows the variables for the plate thickness prediction.

For DC-ML, three clustering algorithms (Gaussian Mix-
ture [53], Birch [54], and Mini Batch K-Means [33]) were
used as input. For each clustering algorithm, 2∼7 cluster
numbers were set as the candidate hyperparameters. Note that
eight or more cluster numbers can be set, but an experiment
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FIGURE 6. Causal model for steel plate rolling factory.

TABLE 3. Selected variables for roll force prediction.

TABLE 4. Selected variables for plate thickness prediction.

takes a lot of time. Furthermore, as we will see in Section 5,
a four-clusters model yields the best result.

The data in Subsection 4.A were randomly divided in 90%
of the training data and 10% of the test data. Each ML
algorithm test was repeated up to 20 times. When performing
DC-ML, the training and validation data were randomly
selected using the 5-fold cross-validation and Mean Absolute
Error was used for the validation of candidate models.

The following steps summarizes the experiment process
for the roll force and plate thickness prediction in detail.

Step 1. The training data of 90% and test data of 10%
were randomly taken from the real data set (4334 cases)
according to the experiment type (the roll force predic-
tion or the plate thickness prediction)

Step 2. The DC-ML algorithm was used to learn an ML
model using four inputs: (1) the training data, (2) the
set of clustering algorithms (Gaussian Mixture, Birch,
and Mini Batch K Means), (3) The set of supervised
learning algorithms (Random Forest Regression (RF),
Gradient Boosting Regression (GB), Gaussian Process
Regression (GP), and CLG-BN (CG)), and (4) the one
clustering variable (Material Strength). Each input clus-
tering algorithm was set with 2 to 7 cluster numbers as
hyperparameters. In this setting, the DC-ML algorithm
was performed 20 times for each cluster numbers.

Step 3. The training data of 90% were reused to learn each
of four ML models (RF, GB, GP, and CG).

Step 4. After machine learning, the DC-MLmodel in Step 2
and the four learned models in Step 3 were evaluated
using the test data of 10%.

D. TESTING PREDICTION
To evaluate the five ML models from the previous sub-
section, the coefficient of determination, called R2 score
(Equation 14), were used. Note that 1 of R2 score means that
themodel perfectly predicted the results without an error. And
a negative R2 score can occur, when poorly predicting the
results.

R2 = 1−
SSE
SST

, (14)
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TABLE 5. Overall average R2 score in roll force prediction.

where SSE denotes the sum of squared errors

SSE =
n∑
i=1

(y(i) − ŷ(i))2 (15)

and SST denotes the total sum of squares

SST =
n∑
i=1

(y(i) − µy)2 (16)

in which n denotes the total number of the data cases and y
denotes the actual target value in a case, ŷ denotes prediction,
and µy denotes the average of actual target values.

V. RESULTS AND DISCUSSION
In this section, we evaluate the five machine learning algo-
rithms and present the lessons learned regarding the applica-
tion of machine learning in SPM.

A. EVALUATION FOR MACHINE LEARNING ALGORITHMS
For the two experiments (the roll force and plate thickness
predictions in SPM), two high-scored ML model families
were selected. These two models contained the same four
clusters. SuchMLmodel families can be called a four-cluster
ML model family. In the following two subsections, the
DC-ML models mean the four-cluster ML model family.

1) EVALUATION FOR ROLL FORCE PREDICTION
In the roll force prediction, the four-cluster ML model family
showed better results than the four regression models (GB,
RF, GP, and CG). Table 5 shows an overall average R2 score
of each of the five ML algorithms. The R2 score denotes the
prediction accuracy (Equation 14), evaluated by comparing
the actual values and the predicted values. The overall average
R2 score means the average of the R2 scores from 20 tests

In the prediction results, the ML algorithms Gradi-
ent Boosting Regression, Random Forest Regression, and
CLG-BN resulted in relatively lower scores than the ML
algorithm DC-ML. DC-ML predicted the roll force with the
highest accuracy (0.8828) and precision (0.0117). Among the
four algorithms except DC-ML, Conditional Linear Gaussian
showed the highest result (0.8632), while Gaussian Process
Regression showed the lowest result (0.2066).

Figure 7 shows a box-plot chart corresponding to data
in Table 5. In the figure, the ML algorithm Gaussian Process
Regression was excluded to investigate precisely the results
from the other algorithms.

FIGURE 7. Overall average R2 score for roll force prediction.

TABLE 6. Percentage of selected clustering algorithms in the 20 tests for
roll force prediction.

TABLE 7. Percentage of selected supervised learning algorithms in the
ML model families for roll force prediction.

In the 20 times test, the 20 high-scored ML model families
were learned using DC-ML. For each test, a high-scored ML
model family contained a different clustering model. The
input set of clustering algorithms were Gaussian Mixture,
Birch, and Mini Batch K-Means. Table 6 shows the percent-
age of selected clustering algorithms in the 20 tests. Gaussian
Mixture, Birch, and Mini Batch K-Means were selected with
25 percent, 10 percent, and 65 percent, respectively.

For each cluster of the four clusters in the 20 high-scored
MLmodel families, one of the four supervised learning mod-
els was selected. Table 7 shows the percentage of selected
supervised learning algorithms in the ML model families.
For example, Random Forest Regression was selected with
25 percent, while CLG-BN was selected with 75 percent.
Among the four supervised learning algorithms, CLG-BN
was shown as a best algorithm. And this result is consistent
with the results in Table 5.

2) EVALUATION FOR PLATE THICKNESS PREDICTION
Like the previous subsection, high-scoredMLmodel families
for the plate thickness prediction were learned using DC-ML.
Table 8 shows the overall average R2 score of each of the five
ML algorithms.

For the five ML algorithms, the prediction results look
similar around 0.999 of the overall average R2 score. How-
ever, the SPM control systems require a high level of accu-
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TABLE 8. Overall average R2 scores in plate thickness prediction.

FIGURE 8. Overall average R2 score for plate thickness prediction.

TABLE 9. Percentage of selected clustering algorithms in the ML model
families for plate thickness prediction.

racy, because it directly influences the quality of the final
product (i.e., a steel plate). The higher prediction accuracy
is significant in this domain. The ML algorithms Gradient
Boosting Regression and Random Forest Regression resulted
in relatively lower scores than the ML algorithms Gaussian
Process Regression, Conditional Linear Gaussian BN, and
DC-ML. DC-ML predicted the plate thickness with slightly
higher accuracy (0.9999959) and precision (0.0000008).

Figure 8 shows a box-plot chart corresponding to data
in Table 8. In Figure 8, the ML algorithms Gradient Boosting
Regression and Random Forest Regression were excluded
to investigate precisely the results from Gaussian Process
Regression (GP), CLG-BN (CG), and DC-ML.

Table 9 shows the percentage of selected clustering algo-
rithms in the high-scored ML model families. Of the clus-
tering algorithms Gaussian Mixture, Birch, and Mini Batch
K-Means, Gaussian Mixture was selected with 20 percent,
Birch was selected with 55 percent, andMini Batch K-Means
was selected with 25 percent.

In addition, Table 10 shows the percentage of selected
supervised learning algorithms in the ML model fami-
lies. This result is consistent with the results in Table 8.
For example, Gaussian Process Regression and Conditional
Linear Gaussian BN were selected with 67 and 33 percent,
respectively, while Gradient Boosting Regression and Ran-

TABLE 10. Percentage of selected supervised learning algorithms in the
ML model families for plate thickness prediction.

FIGURE 9. Overall average R2 scores for roll force prediction over clusters.

dom Forest Regression were not selected as shown in their
low scores in Table 8.

B. LESSONS LEARNED
This subsection introduces the lessons learned from this
research to help researchers related to a smart factory make
better decision, when applying machine learning.

• Data Clustering for Smart Manufacturing

Smart manufacturing aims small-quantity batch produc-
tion for various products. The wide range of products
generates a variety of data. In such a case, using a single
ML model may not be able to achieve effective results.
Instead, the approach of using multiple ML models can
provide better performance, because the data in this case
contains separable sub-data. For example, in this paper,
the four-cluster ML model family (i.e., the multiple ML
model approach) showed better results than the approach
of using the single ML model.

• Cluster Numbers and Data Size

The performance of DC-ML is mainly influenced by
the quality of clusters. In data of a fixed size, as the
number of clusters increases, the number of available
data for supervised learning decreases. The number of
data influences the quality of the supervised learning
model. Therefore, it is required to find the appropriate
number of clusters. Figure 9 depicts the overall average
R2 scores for the roll force prediction over 2∼7 cluster
numbers in the experiment of Subsection 5.A.

As the number of clusters increases from 2 to 7,
the score increases and decreases after the four clusters.
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The figure represents a typical correlation between the
cluster numbers (or data size) and the model quality.
To improve the performance of DC-ML, a method of
recommending the appropriate number of clusters is
required. To address this issue, a simple grid search can
be used. However, as the number of clustering variables
increases, the total number of the searching space can
exponentially increase.We leave this for future research.

• Usefulness of Causal Models

Although it is not trivial to derive a causal model (e.g.,
Figure 6) from the target domain, it can help one under-
stand aspects of that field, find weak and/or strong influ-
encing factors, and utilize existing domain knowledge
(e.g., physical and chemical characteristics) to construct
ML models. Understanding the target domain using the
causal model enables us to determine suitable candidates
of machine learning models and algorithms in advance
so that we can efficiently deliver the domain knowledge
to ML engineers.

• Static and Dynamic ML Models

If data are sequential in nature, a dynamic ML model
(e.g., Recurrent Neural Network (RNN) [55], [56] and
Long Short-Term Memory (LSTM) [57]) is usually
required. However, by changing dynamic data to static
data, a static ML model, representing just one snapshot
in time, can be applied. In this research, we found that
the current manufacturing factors are influenced only by
factors in the previous pass (i.e., a first-order Markov
assumption, a factor at a time n only depends on a factor
at a time n − 1). In this case, simply combining the
current pass data with the previous pass data is sufficient
to train the static ML model.

• Missing Data and Data Precision

In our experience of applying machine learning to smart
factories, oftentimes we have encountered a missing-
data situation in which proper data are missed or the pre-
cision of the acquired data are too low to apply machine
learning. For machine learning, collecting the right data
is the most imperative task that should be performed in
the data acquisition phase. It is highly recommended to
collect high-precision data. However, it will be costly.
Therefore, finding right prediction level according to
analysis goals is a critical task.

VI. CONCLUSION
In this paper, we presented ML technologies in a steel plate
production line. We focused on finding high-scored ML
algorithms which can be used for the roll force and plate
thickness prediction at each rolling pass, so that one can find
the best control conditions to produce high-quality steel plate
products. In addition, the ML approach in this paper can

reduce a sensor cost as well as its operational cost. In our
experiment, DC-ML shows the acceptable results for the roll
force and plate thickness prediction.

The idea behind this paper can also be used to apply other
operations in a smart factory. In the era of Big Data, unused
data in manufacturing lines are overflowing and sleeping.
The prediction capability of machine learning with such data
can be utilized for replacing existing facilities, devices, and
sensors in the manufacturing lines. By doing so, the oper-
ational cost can be significantly reduced. Especially, DC-
ML has characteristics suitable for smart manufacturing,
aiming small-quantity batch production for various products,
because it can provide multiple ML models according to
different kinds of products in a same category. In this paper,
we only focused on the operation of steel plate rolling smart
factory. Future work will consider to apply the approach in
this paper to other facilities and other smart factories.
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