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Abstract—

Cloud network monitoring data is dynamic and distributed. Signals to monitor the cloud can appear, disappear or change their importance
and clarity over time. Machine learning (ML) models tuned to a given data set can therefore quickly become inadequate. A model might
be highly accurate at one point in time but may lose its accuracy at a later time due to changes in input data and their features.
Distributed learning with dynamic model selection is therefore often required. Under such selection, poorly performing models (although
aggressively tuned for the prior data) are retired or put on standby while new or standby models are brought in. The well-known method
of Ensemble ML (EML) may potentially be applied to improve the overall accuracy of a family of ML models. Unfortunately, EML has
several disadvantages, including the need for continuous training, excessive computational resources, requirement for large training
datasets, high risks of overfitting, and a time-consuming model-building process. In this paper, we propose a novel cloud methodology
for automatic ML model selection and tuning that automates the model build and selection and is competitive with existing methods.
We use unsupervised learning to better explore the data space before the generation of targeted supervised learning models in an
automated fashion. In particular, we create a Cloud DevOps architecture for autotuning and selection based on container orchestration
and messaging between containers, and take advantage of a new autoscaling method to dynamically create and evaluate instantiations
of ML algorithms. The proposed methodology and tool are demonstrated on cloud network security datasets.

Index Terms—Cloud analytics, machine learning, ensemble learning, distributed learning, clustering, classification, autoselection,
autotuning, decision feedback, cloud DevOps, containers, Docker, Kafka
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1 INTRODUCTION

LOUD platforms are empowering new, complex busi-
Cness models and currently coordinating more global
integration networks than many researchers and analysts
have predicted [6], [13]. Cloud network monitoring environ-
ments produce and store huge amounts of data along with
their telemetry signals for infrastructure management. Such
network data, when properly processed, should provide
important insights into cloud network behavior at both the
administrative and user level, especially in terms of its inter-
action with application performance, security, and resilience
[29]. With virtualization, network configurations, traffic pat-
terns, and connectivity are subject to change far more often
than in the past with the result being a dynamic networking
environment in which the telemetry signals are distributed
and exhibit several transients with rather small time con-
stants. Pattern recognition and machine learning have been
used to build predictive models relating telemetry signals
to application performance and throughout. Their usage
on the cloud has been well established in the context of
cloud operational analytics [5]. The success of such models
very much depend on data feature selection, but given
the frequent variations in cloud environments, some of the

e Rupesh Raj Karn is with the Center on Cyber-Physical Systems, Khalifa
University, Abu Dhabi, UAE. Email: rupesh.karn@ku.ac.ae

e Prabhakar Kudva is with IBM Research Yorktown Heights, NY, USA.
Email: kudva@us.ibm.com

o [brahim (Abe) M. Elfadel is with the Center on Cyber-Physical Systems,
Khalifa University, Abu Dhabi, UAE. Email: ibrahim.elfadel@ku.ac.ae

data features might change their importance and clarity
over a given period of time. As a result, some prediction
models might be highly accurate in one dataspace but not
so on a relatively different dataspace. Even comprehensive
models may quickly become erroneous in the case where the
training and testing data vary significantly over time due to
changes in workloads, configurations, network topologies,
etc. As a result, a single, static machine learning model
is often insufficient to produce accurate results for a long
period of time. Distributed learning with dynamic model
selection and time-dependent model parameter tuning is
one possible solution to this problem. More specifically,
a dynamic strategy for auto-selection and auto-tuning of
machine learning models is required that shows significant
variation over time.

An alternative solution is Ensemble Machine Learning
(EML) where different data subsets are drawn from the
training set and each training subset is used to train a dif-
ferent classifier. Statically-tuned EML is known to provide
better predictive performance than a single learning model
[16]. Most EML methods use a single base-learning algo-
rithm to produce homogeneous base learners, i.e., learners
of the same type that use different sets of parameters to
create different learning models over the training subset,
thus leading to homogeneous learning ensembles. But in
order for the prediction methods to be more accurate than
any of its individual members, the base learners have to be
as diverse as possible with each base learner as accurate as
needed. So in this paper, we use heterogeneous base learn-
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ers, i.e., learners of different machine learning types, and
weighted voting to generate a single prediction result from
the output of individual learners. Deep neural network, also
called deep learning is another alternative solution. But,
the deep learning models require relatively larger dataset
and longer time than traditional machine learnings to train
the model, so they are not usually considered in dynamic
system where quick response is required.

Automated methods for machine learning, which in-
clude automated ensemble generation, hyperparameter tun-
ing and feature selection have been widely studied to derive
improved machine learning models [22]. The comparison
among different machine learning models and selection
of the best one have also been reported, and [1] gives a
representative view of the state of the art as well as ongoing
research in this area.

While these approaches optimize learning models, the
dynamic selection among such tuned models, and automat-
ing the tuning and selection together in a Cloud DevOps
environment continues to be an area of practical interest.
While prior work has been successful in finding optimal
machine learning algorithms, the goal of this paper is to pro-
vide a dynamic procedure and context for model selection
and tuning in environments where signal quality and data
content change frequently and where tuned models need to
be updated in a DevOps framework.

More specifically, a “Reflexive DevOps Architecture”
for machine learning (ML) models is proposed. The term
‘reflexive’ denotes that the action (training and testing of
the model) has to be performed spontaneously in response
to the event. In this architecture, a dynamic strategy based
on Cloud DevOps and autoscaling for auto-selection and
auto-tuning of machine learning models is implemented,
and tested on a cloud network security dataset that exhibits
significant variation over time. In the remainder of the
paper, we call this architecture as “Reflexive DevMLOps”.
In our proposed approach, models that become outdated or
inaccurate over time are retired or put on standby while new
or standby models are brought in. A number of different
classification (supervised learning) algorithms are imple-
mented on the data spaces that are generated from the net-
work security dataset by clustering (unsupervised learning)
in order to segment the data set for better classification
accuracy. Later, the EML and deep learning approaches
are also implemented on the same dataset to compare the
results with the proposed Reflexive DevMLOps setup.

The contributions of this paper can therefore be summa-
rized as follows:

1) Matching a single optimized model to a given context
in a dynamic environment.

2) Creating and building multiple models and selecting
the best for a given context.

3) Closed loop, auto-selection mechanism in the cloud
DevOps environment.

4) Using unsupervised clustering to segment the dataset
ahead of supervised classification.

5) End-to-end comparison with Ensemble Machine Learn-
ing.

6) Deep learning implementation and some of its hyper-
parameters tuning.
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Fig. 1: Cloud DevOps Architecture for Machine Learning

Of course,the proposed Reflexive DevMLOps procedures
can be applied to several areas of the cloud or even possibly
outside cloud computing.

This paper is organized as follows. Section 2 covers the
Cloud DevOps setup and its operational protocols. Section 3
describes the baseline analysis using static multi-class su-
pervised learning models and seamless integration with un-
supervised learning. The Reflexive DevMLOps architecture
for automatic model selection and their parameter tuning
methods in a dynamic environment are demonstrated in
Sections 4 and 5, respectively. Several cases for scaling
machine learning models are explained in Section 6. Sec-
tion 7 explains the significance of dynamic feature selection
for the models to improve the accuracy. The comparison
of dynamic model selection and parameter tuning with
statically-tuned EML is shown in Section 8. In Section 9,
we present preliminary results on the use of deep learn-
ing and compare them with the more traditional ML of
the preceding sections. The time comparison between our
technique and ensemble learning is shown in Section 10.
Representative prior publications most related to our own
work are surveyed in Section 11. The conclusions are given
in Section 12.

2 CLouD DEVOPS ARCHITECTURE AND METHOD-
OLOGY

Container orchestration and scaling is used for defining and
running multi-container microservice applications [31]. It is
also used for autoscaling applications based on demand.
In our work, this autoscaling feature has been modified
for evaluating and selecting the models and parameters of
machine learning algorithms in the containers. A messaging
client [11] has been used to transfer the messages among
containers. The machine learning algorithms are run inside
containers [4].

Figure 1 shows the Cloud DevOps architecture for auto-
model selection and tuning. Figure 2 shows its detailed
block diagram. This setup simulates the cloud environment
where each of the docker containers can be located at dif-
ferent network/geographical locations or within the same
network but on the different physical machines. The selec-
tion of models is based on cloud microservice instantiation
and deletion. Containers that implement new models are
brought online, while stale and outdated ones are taken
off-line. We use Kafka [23] to transmit messages among the
containers. The use of Docker-compose [18] enables individ-
ual containers (and therefore the machine learning workers
in them) to be brought online or taken off-line in DevOps
fashion. Inside each worker container, a different machine
learning (ML) algorithm is modeled. In online learning,
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these machine learning containers would be enabled with
some learning off-line until their accuracy increases, while
some actively predict. The sender container acts as a stream-
ing data generator that continuously streams the data. For
the purposes of this paper, the UNSW-NB15 data set [2],
[20] is used and treated as a streaming networking data
source. The ML-worker containers accept these messages
from Kafka to update their models, perform a prediction
which is sent to a model selector again via Kafka. Using
the auto-selection auto-tuning methods, a final result is
calculated. The workers are continuously tracked by the
scaling analyzer, which decides whether to scale up or
down and machine learning parameters. Initially the models
development is based on labeled data, but as the learning
progresses, these are determined by a method of analytical
consensus among the models. The scaling analyzer turns
on or off a set of ML-workers using docker-compose. Using
the streaming service this setup can be used to predict the
labels for real-time or online data samples fed by the users
or applications.

3 BASELINE MACHINE LEARNING IMPLEMENTA-
TION

Prior to developing the new approaches, a baseline ma-
chine learning implementation was evaluated for future
comparison. Seven supervised (also called classifiers) and
three unsupervised (clustering) ML algorithms are chosen
randomly. The supervised algorithms include K-Nearest
Neighbors (KNN), Naive Bayes, Random Forest, Multi-
Layer Perceptron (MLP), Gradient Boosting, Decision Tree,
and Stochastic Gradient Descent (SGD). The unsupervised
algorithms include K-Mean clustering, Birch clustering, and
the Gaussian mixture model. Machine learning algorithms
are written with Python. Well-known python packages such
as Numpy, Scipy, Scikit learn, Pandas, Matplotlib etc. have
been used.

3.1 Dataset Label Encoding and Normalization

The "UNSW-NB15” dataset [2], [20], [21] has been selected
to train and test all our ML implementations. It is treated
and used as online data for our analysis. The dataset is used
for evaluation of network anomaly and intrusion detection
systems. It contains three categorical variables: “proto’, ‘ser-
vice’” and ‘state’. These variables are provided as text val-
ues which represent various traits. ‘Proto” describes trans-
action protocol used TCP, UDP, CRTP, GGP, HMP
etc. ‘Service’ describes the connection shell as SSH, SSL,
FTP — Data, DNS, DHCP etc. ‘State’ describes the de-
pendent protocols used as INT, REQ, CON, RST etc. The
data set has the features of both normal and contemporary
synthesized attack activities of the network traffic having
82,332 records for training and 175,341 for testing. Each
record consists of attributes of different data types (e.g.,
binary, float, nominal and integer). The feature set includes
port numbers, service name, protocols, IP addresses, packets
transmission statistics etc. and the 10 labels: 9 different types
of attack name and a normal ("NO-ATTACK”). Traditional
datasets such as KDD98, KDDCUP99 band NSLKDD, pro-
vide a limited number of attacks and the information of

3

packets which are outdated. Moreover, UNSW dataset has
been generated using some of the well-known tools like
IXIA traffic generator, Argus, Bro-IDS etc [20]. More details
on the features of this dataset can be found at [2]. Many
machine learning algorithms cannot support text based cate-
gorical values, and as a result, their conversion into numeric
form is required. The Python packages, Pandas and Scikit-
learn, provide various techniques to transform the categor-
ical data into numeric values. Label Encoding [14], [33] is
one such technique where N different text values are picked
up randomly and mapped on the {0,1,2,..., N — 1}. This
encoding has been selected in this work. Other techniques
like “One hot encoding”, ”“Custom binary encoding” [24] are
also available that convert each categorical value into a new
column and assign a 1 or 0 (True/False) value to the column.
This type of encoding has the disadvantage of adding many
more columns to the data set. Furthermore, the number of
model variables grows significantly, especially if the dataset
has a large number of categorical values. A more sophis-
ticated algorithm called “Backward Difference Encoding”
[24] has been tested prior to choosing “Label Encoding”.
This encoding has generated too many negative numbers,
and as a result, Python Scikit-learn run into exceptions
while clustering (when unsupervised is added along with
supervised learning) the dataset. Hence label encoding is
chosen for converting the textual categorical values into
numerical values. After encoding, the dataset is normalized
to adjust large values measured on different scales to a
notionally common scale.

3.2 Baseline Supervised Learning

Some baseline tests have been performed over the dataset
indicated in Section 3.1 using known algorithms such as
multi-class classification. As listed in the first paragraph of
Section 3, all the classification algorithms are applied to a
training dataset having 82, 332 records after label encoding
for multiclass or multinomial classification. The dataset fea-
ture “attack_name” is used as the label. The testing data set
has 175, 341 records, and the predicted label is compared
with the natural label to calculate the accuracy score. The
result is shown in Figure 3. With this direct approach, the
highest accuracy was 61.3%. This is far from sufficient for
a cybersecurity application. Some of the parameters of the
machine learning are tuned to check the effect on accuracy.
For example, in KNN classifier, the number of neighbors
is chosen from the set {1,3,5,7,9,.....,27,29}, while in
the Random Forest classifier, the number of estimators is
chosen from the set {10, 15,20, 25, ....,90,95,100}. The 10
fold cross validation score is calculated at each parameter
value, and the results are shown in Figure 4, which clearly
illustrates that tuning the ML parameters increases accuracy,
but the increase is limited to the 5 — 10% range for these
two ML models. Hence a different approach of modeling
has been proposed in next Section for accuracy more than
95%.

3.3 Supervised Learning with Label Categorization

As explained in Section 2, the dataset has features named
attack_name with a total of 10 different categorical values:
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9 for labeling 9 different types of attack and one “NO-
ATTACK” for normal behavior. In the previous section,
this feature has been used as the label for a multi-class
classifier. To increase classification accuracy, the multi-class
classifier has been converted into a multiplicity of binary
classifiers, with each one of them predicting one of the attack
labels: attack_name. For that, 10 new labels are created
from attack_name where 1 or 0 is assigned to each of data
samples according to presence or absence of the particular
attack type. Each classifier is run for 10 iterations, once for
each of the categorical columns as a label, and the accuracy
score is measured as in the previous section. The sizes of
training and testing sets are the same as indicated in previ-
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ous section. The result is shown in Figure 5. The attack label
name is along the X-axis while the Y-axis shows the accuracy
for each label prediction using 7 different classifiers. The
prediction accuracy for 8 of the 9 cybersecurity attacks is
at least 90%. For the 9th attack, Exploits, 5 of the classifiers
achieve more than 80% accuracy. As is the case in security
threat identification, all the classifiers are conservative in
that they have a significant incidence of false positives,
predicting the presence of attacks when none is actually
present.

3.4 Unsupervised Learning for Clusters

From Figure 5, some of the labels like “NO-ATTACK”,
“Fuzzers”, “Exploits” and “DoS” have prediction accuracy
still below par for most of the models. In order to improve
their accuracies, the unsupervised algorithms are used.
These algorithms find the inherent groupings called clusters
of the data samples such that the samples have high intra-
cluster similarity and low inter-cluster similarity. The basic
intuition is that classification models built with data points
of a particular cluster have higher cross-validation accuracy
score than the models of Section 3.3 because such models are
created and tested over close data points within the cluster.

In support of this basic intuition, unsupervised ML
is first used to partition the UNSW-NB15 into different
clusters using a training dataset whose size is the same
as in Section 3.2. The classifiers are subsequently applied
on the top of the clustered data. K-Means clustering, Birch
clustering, and the Gaussian mixture model have all been
used for clustering based on the default Python Scikit-learn
parameter values. The accuracy of each label prediction (as
in Section 3.3) is measured for the different clusters. The
comparison between accuracies of Naive Bayes, Decision
Tree, and Multi-layer Perceptron classifiers for label "NO-
ATTACK” and cluster_number = {2, 3,4,5,6} is shown in
Figure 6. Even though the number of clusters increases, the
classifier accuracies do not always increase. For some clus-
ters, the accuracy increases but for some others, it decreases.
All the labels of the dataset have shown similar behavior.

Applying unsupervised ML is only meaningful for those
labels whose prediction accuracy is low. For example, the
labels “Worm”, “Shellcode” and ”Analysis” have accuracy
more than 95% for all the selected supervised MLs and
therefore they would not benefit from an unsupervised ML
stage.
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4 AUTOSELECTION OF THE MODELS Label Machine Learning Ranking
Name 15t ond grd qth 5th 6th 7th
An automatic model selection scheme is needed that Worm 1 2 3 ! 5 7 6
chooses the accurate model dynamically based on the real- Shellcode 1 2 4 7 13 15 6
time data. For example in the previous section, the multi- | Reconnaissance | 5 | 6 s |41 71112
cre . . - ... . NO-ATTACK 2 3 1 4 6 7 5
class classification is converted into a multiplicity of binary Generic 5 Z Vi 3 1 3 5
classifications to improve the cross validation accuracy. In Fuzzers 5 3 7 4 1 6 2
such case, with 7 supervised learning algorithms for each Exploits 3 1 5 4 7 6 2
label and 10 different labels in the dataset, there are 70 DoS 4 5 7 3 1 6 2
ible models. Adding clustering over the dataset will Backdoor ! 3 1 7 > 0 2
posst . & & Analysis T 4 |5 7 362

further increase this numbe.r and the large number Qf 1 - K-Nearest Neighbor 2 - Naive Bayess 3 - Random Forest
possible models further motivates the need of automatic 4. Multi-layer perceptron 5 - Gradient Boosting 6 - Decision Tree
model selection. Such selection is enabled by the DevOps 7 - Stochastic Gradient Descent
framework given in Figure 1. Note : This legend is followed in other plots as well.

One technique for automatic model selection is the
voting based on the weighted majority rule. The voting
weights are determined by the prediction accuracies of the Figure 5 achieve more weights than the less accurate ones.
various models. The classifiers with higher accuracy scorein  Table 1 is generated from Figure 5 and shows the ranking
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of the classification models that are used to decide voting
weights for predicting each label. The Reflexive DevMLOps
setup for model auto-selection using weighted majority vot-
ing is shown in Figure 7. The dataset is trained as described
in Section 3.3 and 3.4. During prediction, unsupervised ML
identifies the cluster number for the testing data sample.
Then all the classification models act on the this data sam-
ple and predict its label. The collection of these predicted
labels is sent to the “Dynamic Model Selection & Tuning”
module. It has a submodule called ”"voter” which has the
ML-rankings, as shown in Table 1. Based on the rankings,
the voting weights are applied to such label collections and
a single value is generated as the final predicted label for
the testing data sample.

Algorithm 1: ML Model Autoselection

Result: final result = label of the testing data sample
1 classifiers = {ml_rank,;,mi_ranks,....ml_rank,};

2 number_of_classifiers = count(classifiers);

3 voting_set = classifiers(0:m);

4 voting_set_counter = count(voting_set);

5 predicted_label = majority(voting_set);
6
7
8
9

if num(predicted_label) == 1 then
final_result = predicted_label;
else

while voting_set_counter <= number_of_classifiers
do
10 voting_set.append(classifiers(voting_set_counter));
1 predicted_label = majority(voting_set);
12 if predicted_label == ml_rank1 or predicted_label
== ml_rank2 then
13 final_result = predicted_label;
14 end
15 if voting_set_counter == number_of_classifiers
then
16 final_result = predicted_label;
17 end
18 voting_set_counter = voting_set_counter + 1;
19 end
20 end

Autoselection is described in Algorithm 1. The models
are selected using an incremental process according to the
following sequence in the DevOps environment of Figure 1:
(A) For each label, the voting set of top m ranked models
of table 1 is fetched (for illustration, m = 4). If their
prediction output is same then any of those m models
can be selected. Its output is the final prediction result.
It is called majority based voting where 4 out of 7 MLs
predicts the same output.

If case (A) is false then the majority voting over the
current voting set is performed. If the majority voting
returns only 1 value then anyone out of those majority
voted models is selected.

If case (B) is false then the 5" ranked model is added
to the voting set. The majority voting over the current
voting set is performed. If the majority voting result
matches the predicted output of 15 or 2"¢ ranked
model then anyone out of those majority voted models

(B)

©

6

is selected and the voter output is the final predicted
result.
If case (C) is false then the 6 ranked model is added
to the voting set. The case (C) is re-run. If the majority
voting result matches the predicted output of 1%¢ or
274 ranked model then the voted output is the final
predicted result.
If case (D) is false then last ranked (7*" for total 7
classifiers) model is added into the voting set. Any
models that have same predicted output as the majority
vote is selected and the majority voted output is the
final predicted result.
Every model ”casts its ballot” for each test sample. With
the majority voting criteria, the final predicted output is the
one that earns more than half of the votes. A voting set of
4 out of 7 is created in statement 5 of Algorithm 1 for that
purpose. If the final prediction is unable to work out with
the current voting set then predictions from lower-ranked
models are added gradually until the weighted majority
voting condition is satisfied. The models with rank 1 and
2 are given more weight in case (C)—(E) for voting because
they are the models that predict the correct label most of the
time.

To test the model selection algorithm, an online data
stream that changes dynamically over time is needed. To
mimic such a dynamic feature, a dataspace with 10,000
records from the testing subset of UNSW-NB15 is created.
All the classification models are run and their accuracy-
based rankings are recorded at the end of each datas-
pace. Model rankings after each dataspace for label “NO-
ATTACK” and “Generic” respectively are shown in Figure §,
which illustrates the dynamic change of ML ranking over
the dataspace. Model selection using weighted majority
voting for few samples of the dataspace is shown in Fig-
ure 9. The bold green font (in circles) shows the selected
models for every sample. The predicted output is compared
with the actual value. A match is represented by T and a
mismatch is represented by F'.

(E)

Algorithm 2: Model Selection with Unsupervised
Learning + Supervised Learning

Result: final_result = label of the testing data sample
1 cluster_number = {2,34,5,6};
2 cluster_type={Kmeans,Birch,Gaussian};
3 selected_model_accuracy = Unclustered_accuracy;
4 for clustering in cluster_type do
5 for model in cluster_number do
6 predicted_cluster =
model.predict(testing_sample);
// Predicts the dataspace

7 if model_inside_cluster_accuracy
>Unclustered_accuracy then
8 selected_model = model_inside_cluster;
end
10 if model_inside_cluster_accuracy
>selected_model_accuracy then
11 selected_model = model_inside_cluster;
12 end
13 end
14 end

As mentioned in Section 3.4 and shown in Figure 6, clus-
tering helps to improve the accuracy of prediction for some
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labels such as “NO-ATTACK”, “Fuzzers”, “Exploits” and
“DoS”. Increasing the number of clusters doesn’t improve
classifier accuracy for all the clusters. In such cases, the
accurate classifiers are selected using their cross-validation
accuracy score across all the clusters. Such model selection
is described in Algorithm 2.

For example, in Figure 5, the Naive Bayes has an accu-
racy of 74.6% for predicting “NO-ATTACK” without clus-
tering. With clustering, Figure 6 shows that Naive Bayes
has an accuracy of approximately 90% for cluster; and
50% for clusterp in 2 — Mean clustering. If the testing
data sample is predicted into cluster; (using 2 — Mean
clustering model) then Naive Bayes model of cluster; is the
accurate model and hence it is selected for “NO-ATTACK”
prediction. But, if the sample is predicted into cluster, then
Naive Bayes model of this cluster is discarded because its
accuracy (50%) is lower than the unclustered Naive Bayes
accuracy (74.6%). In such case, the accurate Naive Bayes
model is searched across other & — Mean clustered models
where, k € {3,4,5,6} to check if the sample is predicted
into any of the clusters where the Naive Bayes classification
accuracy is more than the unclustered accuracy of 74.6%.
If this condition is not met then unclustered Naive Bayes
model is selected. This step is repeated for Birch clustering

and the Gaussian Mixture model. This procedure guarantees
that for every run, the most accurate model is selected.

After model selection the collection of predicted labels
are sent to the "ML Stats” submodule inside the “Dynamic
Model Selection & Tuning” module, as per Figure 7, in order
to improve model quality. "ML Stats” is used as a model
history log for all models. In particular, the ML accuracy
log stores true or false for the voting decisions that agree
or disagree with a particular model prediction. This set is
incremented at each testing sample. The parameter set stores
the parameter values of each model while the status set
stores the active/inactive state of the model. These "ML
stats” help in scaling the number of ML models as will
be explained in Section 6. After each dataspace, these sets
are cleared, the ML models are recreated with the last used
testing dataspace, and the ML rankings, as described in
Section 3.4, are updated.

5 AUTOTUNING OF MACHINE LEARNING PARAME-
TERS

ML models depend for their accuracy on parameters that
can act as accuracy knobs. The impact of parameter selection
on the accuracy of K-Nearest Neighbor and Random Forest
was shown in Figure 4. To make the most out of a given ML
model, its parameters should be allowed to change over the
model life time in line with the dynamic changes of the data
waveforms and their feature patterns. Before deactivating
a given model completely as required in the Reflexive
DevMLOps model autoselection context of Section 6, it is
recommended that its parameters be adapted while tracking
its accuracy and to record any significant accuracy improve-
ment as a result of the adaptation process. In this paper,
we adopt such an adaptive methodology as a necessary
parameter tuning step before discarding the model during
the auto-selection process. Parameter tuning is automated
according to the diagram of Figure 7 and Alogrithm 3. The
submodule "ML Stats” under the module “Dynamic Model
Selection and Tuning” has the ML parameters stored for
each model. If any model crosses a threshold on the number
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Fig. 9: Dynamic Model Selection

of consecutive erroneous predictions then its parameters

Algorithm 3: Parameter Tuning with Autoselection

are tuned UP and DOWN according to the direction of
threshold crossing. The new parameters are passed to the
ML docker containers via the ”Scaling Analyzer” module.
When all the limits are reached, the model container is
deactivated. The limits are set by the user based on the
dataset pattern or dataspace time window.

The auto-tuning is demonstrated here with an example.
The online data stream that changes dynamically over the
time is simulated by creating the dataspaces. The testing
dataset is divided into 17 different dataspace time windows,
each with 10, 000 records.

Figure 5 shows that the accuracy of "NO-ATTACK”
prediction using Gradient Boosting classification over com-
plete testing dataset is only 28.5%. On the other hand,
using auto-tuning strategy, the achieved accuracy is much
higher, and it dynamically changes over time as shown
in Figure 10. The parameters selected for auto-tuning are
n_estimators, maz_depth (maximum depth of the indi-
vidual regression estimators which imposes a limit on the
number of nodes in the tree), min_samples_split (min-
imum number of samples required to split an internal
node), and max_features (number of features to con-
sider when looking for the best split) [15]. In the first
experiment, Python Scikit-learn default values are used for
those parameters (n_estimators = 100, max_depth = 3,
min_samples_split = 2, max_features = None) over all
the dataspaces. The accuracies and parameter values are
shown in blue in Figure 10. In another experiment, the
parameters are tuned UP as described in Algorithm 3 at the
beginning of every dataspace time window. The curve in red

Result: final_result = Parameters Tuning & Autoselection
1 accuracy_counter = 1;
2 increment_counter = 0;
3 decrement_counter = 0;
4 for accuracy_counter in ml_accuracy_history do

5 if ml_accuracy_history[-accuracy_counter] == "false’ then
6 accuracy_counter=accuracy_counter+1
7 else

8 accuracy_counter=0;

9 break;

10 end

1 if accuracy_counter >Tuning_limit_setby_user then

12 ML_parameter <— Read from Machine Learning

Stats.;

13 Increase the ML_parameter values;

14 accuracy_counter = 0;

15 increment_counter = increment_counter + 1;

16 end

17 if increment_counter >Tuning_UP_limit_setby_user
then

18 ML_parameter < Read from Machine Learning

Stats.;

19 Decrease the ML_parameter values;

20 accuracy_counter = 0;

21 decrement_counter = decrement_counter + 1;

22 end

23 if counter >Deactivation_limit_setby_user or
decrement_counter >Tuning DOWN_limit_setby_user
then

24 increment_counter=0;

25 increment_counter = 0;

26 EXEC ML_Container_scale_down;

27 end

28 end

shows the accuracies and parameter values. The difference
in accuracy between the two experiments can be seen in
most of the dataspaces using parameter auto-tuning.
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6 SCALING THE ML CONTAINERS

The module “Scaling Analyzer” in Figures 1 and 2 performs
the up-or-down scaling operation of ML models using met-
rics such as ML status, accuracy log, and other parameters
stored in the “ML Stats” submodule as in Figure 7. The ML
scaling rules are as follows:

(A) Prediction Error Rule: Any ML model that makes
erroneous predictions for S consecutive samples is put
in the "OFF” state. This is because it will introduce
inaccuracies for the weighted majority voting. The pa-
rameter S is set by the user.

(B) Time-out Rule: Each ML model runs inside a docker
container which might time out due to network conges-
tion or to a completion time limit on ML algorithms. An
ML docker container that times out for ® consecutive
samples is put in the "OFF” state and another ML
docker container with the same parameter values as the
discarded one is activated. The parameter R is set by
the user.

9

(C) Tie-breaking Rule: Let M be the total number of ML
models. When the voting results are closer to a tie
between two labels for P consecutive samples and the
number of active ML models is less than M, an OFF
ML model is turned on for tie-breaking in the weighted
majority vote. The parameter P is set by the user.

(D) Inaction Rule: If the number of active ML models is
less than M for () consecutive samples, the OFF ML
models are activated and their predictions are included
in the weighted majority vote. The parameter () is set
by the user. An ML model goes OFF due to either the
Prediction Error Rule or the Time-out Rule.

The plot of MLs scaling using the Inaction Rule (A)
(for scale DOWN) and Rule (D) (for scale UP) is shown
in Figure 11. The numerical values for the user-defined
scaling parameters are: M = 7, S = 100 samples and
Q = 100 samples. All the ML models predict the “NO-
ATTACK” label for the dataset. For the entire testing set,
the K-Nearest Neighbors, Naives Bayes and Random Forest
are scaled less frequently than other models. This behavior
is in close agreement with the ranking of ML models for
the “NO-ATTACK” prediction as shown in Table 1. The
feedback ML system that we have described can also be
understood in the context of virtual machine autoscaling
based on cloud performance metrics.

7 ACCURACY WITH FEATURE SELECTION

Feature selection is a mechanism to choose the features
automatically from the dataset that contribute most to
the prediction label. Selected features can reveal the time-
dependent evolution of the dataset records while unse-
lected ones negatively impact the predictive accuracy of
ML models. Other advantages of feature selection include
a reduction in model overfitting and reduction in training
time. The Python sklearn.feature_selection module has
been used to demonstrate some of these feature-selection
characteristics. All 7 supervised models of Section 3 have
been used. Univariate feature selection has been adapted in
this paper where the features with the strongest statistical
cross-correlation with the output variable are selected. The
Python Scikit-learn library provides the Select K Best class
to select a specific number of features based on the cross-
correlation score [15]. Figure 12 shows the classifier accura-
cies using the top 10, 15, and 20 features and compares with
a model that uses all features. In addition, Recursive Feature
Elimination (RFE) is applied to the Random Forest classifier
by selecting 10 through 25 important features as shown in
Figure 14. RFE works by recursively eliminating the least
important attribute from the feature set and building a
model based on the leftover attributes [25]. Out of the 7
classifiers, Python Scikit-learn allows only Random Forest
model to use RFE. An important observation is that models
based on a subset of features are not always accurate. This
suggests that the dataset has large variations from one
sample to another, which in turn, justifies the statistically
different dataspaces that were created from the dataset to
demonstrate the validity of the model autoselection and
autotuning processes in Reflexive DevMLOps of Sections 4
and 5. The importance of each feature for the ML models
can change over time, e.g. features {fi, f2, f3} are more
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important at time ¢; but not so important at time ¢, for
the label prediction. A new model has to be created with
most important features, which further motivates the need
for dynamic model selection and tuning over time. To
demonstrate the dynamic feature selection, the dataspaces
with 10, 000 records from the training and testing dataset are
again used, and new classifiers are dynamically created for
each training dataspace. When such classifiers were tested
using the testing dataspace, their accuracies turned out to be
lower than expected. These tests are still under investigation
but one possible approach to remedy the loss of accuracy is
to use Q-learning. This will be undertaken in a follow-up
publication.
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8 COMPARISON WITH STATICALLY-TUNED EN-
SEMBLE MACHINE LEARNING

Ensemble Machine Learning (EML) has been extensively
used to fulfill the need of having multiple ML models.
Its goal is to combine the predictions of several individual
estimators within a learning model to improve its accuracy
and robustness with respect to an individual predictor.
AdaBoost and XgBoost are known to be powerful EML
models. The Python sklearn.ensemble module provides
the AdaBoostClassifier and Python parent library pro-
vides independent X gBoost installable EML module [34].
Both algorithms are applied over the UNSW-NB15 dataset
with labels encoded as in Section 3.3. Their cross-validation
accuracy for each type of label prediction is shown in
Figure 14. When this is compared with the accuracy of
the Reflexive DevMLOps setup (auto-selection and auto-
tuning algorithms) described in Sections 4 and 5), the latter
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Fig. 14: Statically-Tuned Ensemble Learning Accuracy

accuracy is better than 90% for all the label predictions,
especially in a dynamic environment where the datasapce
changes and some of the data features lose their importance
over time.

9 CLASSIFICATION WITH DEEP NEURAL NET-
WORKS

Finally we have applied deep neural networks to this
dataset and compared their accuracies with the more tradi-
tional learning methods of the previous sections. The main
advantage of deep neural networks, and deep learning in
general, is that they provide many hyperparameters that
can be tuned to build an accurate model. But as explained in
section 1, a longer time is needed to build the deep learning
model vs. traditional classifiers. We have performed several
experiments using Python — Keras and Tensor flow to
arrive at the right set of hyperparameters and obtain the
accuracies shown in Figure 15. The hyperparameter values
are as follows: {Number of Hidden Layer = 2, Number of
units at input = 43, Number of units in first & second hidden
layer = 60 & 30, Initialization = Random, Optimization
= Adam, Activation for hidden layer = Relu, Activation
for output = Sigmoid}. Different sets of hyperparameter
values can be used for each type of label prediction to
further improve the accuracy. Furthermore, an experiment
for multi-label classification similar to section 3.2 using
softmax activation at the output layer has been performed
for various numbers of hidden units for each hidden layer.
The result is shown in Figure 16. The hyperparameter values
are as follows: {Number of Hidden Layer = 2, Number of
units at input = 43, Initialization = He, Dropout probability
= 0.4, Optimization= Adam, Activation for hidden layer =
Relu, Activation for output= Softmaz}. As is clear from
Figures 3 and 16, the prediction accuracies can be increased
to 100% by running rigorous experiments and calculating
the optimal hyperparameter values but at the cost of long
training times. The net conclusion is that the Reflexive
DevMLOps presented in the previous sections seems to be
the right design choices to improve classification accuracy
without sacrificing run time.
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10 COMPARISON WITH ENSEMBLE LEARNING

As shown in Figure 2, all the ML workers execute in parallel
and send the prediction result to the voter. Also, all the
clustering models, shown in Figure 7, operate in parallel. As
a result, the maximum time taken by the model autoselec-
tion setup is obtained by the sum of the slowest clustering
model, slowest classification model and the voting stage.
The training and prediction times of each ML used in the
earlier sections are shown in Table 2. As expected, the
multi-layer perceptron is the slowest ML model during
training while the K-nearest neighbor is the slowest ML
model during prediction. The presence of such MLs in the
autoselection setup is shown as a critical path in Figure 17.
Comparing the runtime information with that of two en-
semble learning methods, namely, AdaBoost and XgBoost,
the autoselection process of course runs more slowly but
with the significant advantage of improved accuracy over
time and dynamic learning behavior as datasets change.

11 LITERATURE REVIEW

For a survey on the large body of work on auto-tuning
ML models, the reader is referred to [1]. In addition to
approaches such as GridSearch for parameter tuning and
Autoensembling for combining models, few other examples
for creating statically-tuned ML models are worth pointing

TABLE 2: ML Training and Prediction Times 1

Model Type Training | Prediction
time(s) time(s)
K-Means Clustering 2.198 0.007
Birch Clustering 7.696 0.017
Gaussian Mixture Model 5.583 0.034
K-nearest Neighbors (KNN) 2.001 4.032
Naive Bayess (NB) 0.074 0.0045
Random Forest (RF) 0.512 0.0054
Multi-layer Perceptron (MLP) 22.486 0.0202
Gradient Boosting (GB) 7.971 0.0077
Decision Tree (DT) 0.325 0.00097
Stochastic Gradient Descent (SGD) 0.111 0.00181
AdaBoost 3.29 0.00001
XgBoost 8.819 0.275

Voter takes 0.171sec for processing.

Critical path H
during training /

Gaussian [~
Mixture Mode oo
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Fig. 17: Critical Path in Model Selection

out. An automated tuning of the parameters of support vec-
tor machine (SVM) classifier for pattern recognition has been
presented in [8]. The parameters are tuned by minimizing
the estimates of the generalization error of SVM using a
gradient descent algorithm over the set of parameters. This
method has several advantages, including the significant
reduction of runtime and the avoidance of holding back
data subsets for validation. The method therefore makes full
use of the training set for the optimization of parameters in
contrast to cross-validation approaches. In [30] a Multi-layer
Perceptron Neural Network (MLP) and a Support Vector
Machine (SVM) models have used and compared for the
classification of whole-sky, ground-based images of clouds.
The comparison has been made based on their accuracies
and standard deviations over various subsets of the image
data. The results have showed they both have similar per-
formance that is superior to the multiband thresholding al-
gorithm popularly used for whole-sky image classification.
In [19], ensembles of MLPs are used to make profit/loss
decision in stock trading. A number of stock trading rules
are extracted by a graph-based evolutionary algorithm. The
MLP weights are used to provide similarity metrics to these
rules. Results have confirmed that an ensemble of different
MLPs produces better accuracy than any single model. An
automated ML model search named TUPAQ has been pro-
posed in [27] that automatically finds and trains models for
a users predictive application. The quality of the resulting
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ML model is similar to those found by exhaustive strategies
but requires less computational effort. A comparison of
five machine learning models: Naive Bayes, KNN, Random
Forests, SVM, and Neural Networks has been performed
in [10] using spatially constrained, remotely sensed geo-
physical data. The comparison results have shown Random
Forests to be a good first choice in terms of computational
efficiency, stability with respect to variations in the model
parameter, and accuracy with respect to other ML models.

Reinforcement learning has been used for dynamic
model selection in [12] where the model dynamically adapts
to the environment based on expert models for each op-
erational space to optimize resource utilization in cloud
data centers. Unfortunately, reinforcement learning has a
tendency to get trapped in local minima, which would
restrict its ability to learn any further [28]. One possible
remedy is to use reinforcement with deep learning [17].

A reinforcement learning approach for the automatic
design of a deep neural network is presented in [3] where
it has been applied for image recognition with CIFAR-10
and for language modeling with the Penn Treebank dataset.
A feedback system is used where the controller creates
multiple child models and based on each child’s feedback,
the controller learns to assign high/low probability to the
areas where the deep learning architecture has achieved
good/bad accuracy. A similar approach is the use of Evo-
lutionary Algorithms to discover the ”"best” neural network
for image classification [26]. The method has been tested
on the CIFAR-10 and CIFAR-100 datasets with classification
accuracy of more than 90% and compared with reinforce-
ment and ensemble learning in terms of computational
complexity and training cost.

An application-agnostic, ML autoscaler called MLscale
has been proposed in [32]. A traditional autoscaler requires
deep understanding of the application domain, the un-
derlying cloud infrastructure, and workload dynamics in
order to accurately scale resources. Such information is not
always available to the system administrator, and a possible
solution according to [32] is to use a neural network for
online performance modeling and a regression predictor
to estimate post-scaling performance and system metrics,
respectively. Result have shown a resource cost reduction by
50% in comparison with the optimal static policy. A survey
of self-aware, adaptive, runtime autoscaling for cloud-based
applications and services is given in [9]. In particular, the
major requirements for autoscaling in cloud computing are
discussed and suggestions for further research in this area
are given. As for feature selection methods, a survey has
been made in [7] with the objective of illustrating how
variable elimination can be applied to a wide array of
machine learning problems.

12 CONCLUSIONS AND FUTURE WORK

In this paper, several supervised and unsupervised ML
models have been combined and applied on a cloud security
dataset. To achieve higher accuracy, multiple models are
created for predicting each type of security attack. The
need of unsupervised models in addition to the supervised
ones is demonstrated and shown to result in improved
prediction accuracy. A Reflexive DevMLOps scheme for

12

model selection according to dynamic data evolution is pre-
sented. New models are trained offline and brought online
as needed, while older tuned models are discarded when
they can no longer achieve adequate prediction accuracy.
Models brought online are further automatically tuned to
adapt their prediction accuracy to the dynamic data set. The
requirements of dynamic feature selection in the context
of distributed learning is explained. A comparison with
the boosting ensemble learning is made to demonstrate
the superiority of dynamic model selection over statically
trained ensemble learning. In the future, we plan to add
Reinforcement learning models to the portfolio of ML mod-
els that are available for autotuning and autoselction in our
toolset. We also plan to exercise the expanded toolset on a
variety of cloud computing datasets.
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