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ABSTRACT The transmission and negotiation of the robot swarms and the technical support provided
by the communication technology are inseparable, and modulation recognition plays an important role in
this transmission. Due to the diversity of current classifiers, choosing the correct classifier to improve the
classification effect has become a key issue. To this end, this paper explores the performance of different
classifiers in modulation recognition, selects six classifier families, and compares a total of 77 different
single classifiers on the modulation dataset, which is implemented on the following three platforms: Weka,
Python and MATLAB. The results show that the strong classifiers formed by the combination of weak
classifiers is very effective, and Boosting, Bagging, and Random Forest are the three best classifier families.
In addition, it was found that as the signal-to-noise ratio (SNR) increases, the overall performance of the
classifier families gradually improves, but the ranking of the families performance remains consistent.

INDEX TERMS Modulation, machine learning, information entropy, performance evaluation.

I. INTRODUCTION

With the continuous improvement of communication and
computer performance, intelligent robotic swarms are now
one of the most popular research areas in artificial intelli-
gence. The robot group originates from biologically-inspired
robotics swarms, and the relevant research has mainly exam-
ined how to make a number of autonomous robots with
relatively simple structures and functions engage in a certain
kind of collective behavior to accomplish complex tasks via
interaction, coordination, and control. Obviously, to achieve
coordination between groups, the effectiveness of communi-
cation and negotiation of robotic swarms, and the effective
sharing of information between groups must be ensured.
Therefore, communication and coordination between robotic
swarms are vital, and effective communication can greatly
improve the performance of the system. Modulation recog-
nition is an indispensable part of communication, and mod-
ulation recognition technology is one of the important
means in electronic reconnaissance; it plays a significant
role in the research of modern information technology,
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such as communication reconnaissance, anti-reconnaissance,
and communication confrontation. Modulation recognition
technology is an important technology in software radios,
which are widely used in military, commercial, and civil
applications, and has been the focus of research in recent
years [1]. Lin et al. [2] completed individual identification of
radio equipment based on machine learning and dimensional-
ity reduction. Liu et al. [3] classified modulated signals based
on ensemble learning. Tu et al. [4] used semi-supervised
learning with generative adversarial networks to perform
signal classification. Similarly, Shi et al. [5] used dynamic
threshold settings to effectively identify RF signals. Zhang [6]
completed D2D communication based on RF fingerprint
authentication. Wang [7] used the factual complexity method
to perform feature extraction and classify communication
signals. Zhang et al. [8] investigated the capability of some
evolutionary algorithms to achieve optimal solutions at an
affordable complexity, and also globally optimized the power
allocation between channel estimation and data transmis-
sion of user devices and their host remote radio units,
greatly improving the forward capacity [9]. Wen et al. [10]
used the block orthogonal matching pursuit (BOMP) algo-
rithm to recover block-sparse signals from measurements.
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FIGURE 1. The recognition process of a statistical-patterns based
recognition method.

More details about modulation recognition were presented in
other previous works [11-15].

Currently, the most common methods used in modulation
recognition technology are the statistical patterns-based
recognition method and the decision theory-based recogni-
tion method. In the decision theory-based method, the test
statistics of the signal (generally the likelihood ratio or aver-
age likelihood ratio) are obtained via theoretical analysis
and calculation, and are then compared with the appropriate
threshold to output the modulation signal types. Under the
Bayesian minimum mispredence cost criterion, the recog-
nition method based on decision theory can achieve the
best recognition. The statistical patterns-based recognition
method extracts the feature parameters of the received signal,
and then classifies the feature parameters according to a cer-
tain rule, thereby realizing the recognition of different mod-
ulated signals. Considering that the decision theory-based
recognition method is computationally expensive, difficult
to process in real time, and sensitive to noise, among other
shortcomings, a statistical patterns-based recognition method
is used in the present study. The recognition process is
illustrated in Figure 1.

According to Figure 1, the statistical patterns-based
recognition method is mainly divided into two parts: feature
extraction and pattern recognition [16]. Generally, signal pre-
processing is needed before feature extraction. Common pre-
processing methods include signal down-conversion, noise
reduction, and filtering. Feature extraction refers to the find-
ing of features that are easy to classify by processing the sig-
nal. There are many kinds of these features, such as transient
features, constellation features, entropy features, and power
spectrum features. Compared with other features, the entropy
feature has the advantages of small calculation, a simple
principle, and good anti-noise performance. After extracting
the entropy feature of the signal, the classifier can be trained
based on the extracted entropy feature dataset, and finally
used to identify the modulation signal [17].

There are many types of classifiers that originate from
different fields of computer science and mathematics. Some
classifiers, such as linear discriminant analysis (DA) classi-
fiers, are derived from the field of statistics; some, such as
artificial neural network classifiers, are derived from artificial
intelligence fields; others, such as proximity algorithm clas-
sifiers, are derived from data mining fields. Most researchers
are only familiar with a certain class or a limited number of
classifiers. It is customary to solve some new classification
problems with several well-known classifiers, but this does
not guarantee that the classifiers known to researchers can
achieve the best classification results on a particular dataset,
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so it is of great significance for the performance study of all
common classifiers.

It is evident that the development and prosperity of robotic
swarms cannot be separated from the support and assis-
tance of communication. Therefore, to efficiently classify
and recognize the received signals, modulation technology
provides technical support for a good communication envi-
ronment, and effectively promotes the in-depth develop-
ment and progress of robotic swarms. This paper focuses
on the classifier families to explore the best individual
and family classifiers under the modulation dataset. Specif-
ically, this study aims to identify digital modulation sig-
nals, including 9ASK, 4ASK, 2FSK, 4FSK, 8FSK, BPSK,
QPSK, 16QAM, and 32QAM. Eight entropy features of
the signal are extracted as the classification basis, and the
dataset of the combined entropy characteristics under mixed
signal-to-noise ratios (SNRs) are constructed. Based on this
dataset, the performance of the classifiers from different
families is evaluated, and the classifier that optimizes the
classification of the modulated signals is finally selected. The
remainder of this paper is organized as follows. Section II
studies the method of extracting modulation features of com-
munication signals based on information entropy features,
introduces different entropy feature extraction algorithms,
and constructs a dataset of combined entropy features under
SNRs of -10 dB to 2 dB. Section III introduces the classi-
fiers of six families and prepares for the performance eval-
uation of subsequent classifiers. Section IV combines the
dataset of entropy features based on the mixed SNR con-
structed in Section II, and compares the recognition effects of
six classifier families for modulated signals under different
SNRs. Section V further evaluates the performance in the
Section VI concludes the paper.

Il. ENTROPY FEATURE EXTRACTION METHOD

With the rapid development of information theory, it is pos-
sible to be used for the extraction of the features of digital
communication signals. Entropy is a characteristic index used
to measure the uncertainty of the signal distribution state and
the complexity of the signal. Therefore, the information con-
tained in the signal can be quantitatively described. This also
provides a theoretical basis for the quantitative description of
the characteristics of the signal via entropy analysis.

In this study, the power spectrum Shannon entropy, power
spectrum exponential entropy, singular spectrum Shannon
entropy, singular spectrum exponential entropy, wavelet
energy spectrum entropy, and approximate entropy are used
as the extraction characteristics of the modulated signal.
A combined entropy feature dataset is constructed at -10 dB,
-5 dB, 0 dB, and 2 dB, and is used as the basis for classifier
simulation. Additionally, 800 samples are used as the training
set, and 200 samples are used as the test set for each SNR.

A. POWER SPECTRUM ENTROPY
The power spectrum entropy is based on the frequency
domain transform of the discrete signal, reflecting the
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distribution of the spectrum energy of the modulated
signal. The larger the power spectrum entropy, the more
dispersed the spectrum energy. The principle of power
spectrum entropy is as follows: Let the signal sequence

be: X = {x(1),x(2),---x(n)}, First the fast Fourier
transformation (FFT) is performed:
N-1 S
X(k) = Z x(n)e Wk, (D
n=0

After the FFT, calculate the energy at each point in the
spectrum as

N-1

_1 2
E = v Z 1X (k)% ()

k=0

Then the power spectrum of the intercepted signal is there-
fore

E = ZE,-, 3)

and the probability of each point on the power spectrum is:

Pi=z- “

Combining the probability calculated by (4) with Shannon

formula and exponential formula, the signal Power Spectrum

Shannon Entropy and Power Spectrum Exponential Entropy
of the signal can be obtained.

B. SINGULAR SPECTRUM ENTROPY

If the signal sequence is: X = {x(1), x(2), - - - x(n)}, the delay
embedding technique is first used to analyze the intercepted
modulated signal sequence with a window of length M. Let
the window’s delay parameter be 1; the window of length M
can divide the signal sequence into (N — M) segment data to
form matrix A with a dimension of (N — M, M).

Singular value decomposition is performed on A:

A =UBV’, (5)

where B = diag {11, A2, ...,
is the singular value of A.

Then the probability that each singular value occupies the
entire singular spectrum is:

AM} M= A= > >0

A

pi= :
Y M

Combining the p; obtained by (6) with Shannon formula
and exponential formula, the signal Singular Spectrum
Shannon Entropy and Singular Spectrum Exponential
Entropy can be obtained.

(6)
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C. WAVELET ENERGY SPECTRUM ENTROPY
Wavelet transform can be used to analyze non-stationary
signals. Wavelet transform can obtain the basis function by
shifting and scaling the mother wavelet and scale function.
The wavelet basis function has both high-frequency and
low-frequency components, and can simultaneously locate
wavelets in the time domain and the frequency domain. Com-
pared to Fourier transform, wavelet transform can more finely
describe the local subtle features of the signal.

For the signal to be analyzed, its continuous wavelet trans-

form is expressed as
/ foy* < )dt (N

The corresponding wavelet inverse transform is

ft) = — / / — Wf(a, b)l//( b) dadb. (8)

The wavelet transform scale is selected as j, and Fourier
transform is performed on the wavelet signal to obtain

Wf(a,b) = (f, V)

N
Xy =Y dimWy", ©)

where WI{‘," =exp (—j%”kn).
The power spectrum of the wavelet signal can be obtained
by calculating the wavelet signal of each layer:

1
S(k)=ﬁ|X(k)|2,k= 1,2, ,j+ 1. (10)
After normalizing the power spectrum,
Sk)
Pk = — . (11)
S S0

Therefore, the signal wavelet energy entropy can be
obtained as:

N
Hgw =H (p1,p2,....pN) = — Y _pilogypi. (12)

D. APPROXIMATE ENTROPY

Approximate entropy describes the variation of the similarity
pattern of a time series in its reconstruction dimension, and
measures the nonlinear complexity of the time series. For a
given point time series, the approximate entropy calculation
steps are as follows. The sequence u(i) is composed of m

dimensional vectors X (i) in order, where i = 1,2,...,N —
m+1):

X(@) = [u@i),...,ui+m—1)]. (13)

Calculate the distance between the vector X —i and the rest

of the vector X — j for each i value, where j = 1,2, ..., N —
m—+1):

Djj = ke{(l)l,?nx—l] lu(i + k) — u(G + k)|. (14)
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Given a threshold r(r > 0), the ratio of the number of
dij < r to the total number for each i-value is recorded as
Cl'(r),ie.

CI"(r) = num {djj < r} /(N —m+1). (15)

Roughly speaking, C"(r) reflects the probability that the
m-dimensional modes in the sequence approximate each
other in the sense of similar tolerance r. First take C;"(r)
as the logarithm, and then find the average of all i, denoted
¢"(r), namely:

N—m+1

"(r) =N —m+ H~! Z InC"(r), (16)

i=1
add 1 to m and repeat the previous steps to get ¢ (r):
ApEn(m, r,N) = ¢"(r) — ¢"*1(r). (17)

In the above steps, m is a pre-selected mode dimension,
usually taken as 2, and r is a pre-selected similar tolerance.
According to experience, r is 0.1SD(u) — 0.25 SD(u), SD
represents the standard deviation:

1 N
~ 2= w2, (18)
i=1

where u is the average value.

Ill. DETAILS OF CLASSIFIERS

In this section, six representative classifier families are
extracted, and 77 individual classifiers are compared. The
classifier families all have good classification performance.
The individual classifiers will end with -w, -p, and -m,
indicating that they are respectively implemented on Weka,
Python, or MATLAB platforms. The details of all the
individual classifiers are explained in Appendix A.

A. DA

The basic idea of DA is to summarize the regularity of the
classification of objective objects based on the data infor-
mation of several samples of each category that has been
mastered, to establish a discriminant function, and then to dis-
criminate the category of the new sample function according
to the discriminant function of the summary.

DA methods are mainly divided into three categories,
namely distance discrimination, Fisher discrimination, and
Bayes discrimination. The distance discrimination method is
the simplest and most intuitive. It is applicable to the discrimi-
nation of continuous random variables, and has no limit on the
probability distribution of variables. Fisher discriminant anal-
ysis (FDA) is a newly-developed dimensionality reduction
technology. It is based on the criteria that the variance within
the class is as small as possible, and the variance between
classes is as large as possible, to determine the function. The
basic idea of the method is projection, i.e., the combination
of the independent variables of the original space is first
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projected into the space with lower dimensions, and then clas-
sified. In 2015, Mahmoudi et al. [18] proposed an improved
Fisher discriminant function, Modified FDA, which makes
the traditional function more sensitive to important instances,
thus maximizing profits from fraudulent/legal classifiers; the
results confirmed that Modified FDA can bring more profits.
In 2016, Wu et al. [19] used the deep linear DA of the Fisher
network to solve the problem of personnel classification and
recognition. Bayes discriminant analysis (BDA) is a multi-
variate statistical analysis method based on Bayesian criteria
for DA based on the cost decision with minimum risk or the
maximum likelihood ratio. The BDA method is applied in
many fields, including in the prediction of minimum risk [20],
the prediction of coal and gas explosions [21], and the esti-
mation of the default probability of loan applicants [22].
Zhang et al. [23] proposed an improved BDA method in
which the discriminant function allows each class to have
multiple Bayesian decision boundaries, and each Bayesian
decision boundary is in its own subspace. The specific cat-
egories of all classifier families are detailed in Appendix A.

B. SUPPORT VECTOR MACHINE (SVM)

The SVM is one of the most powerful methods in machine
learning algorithms. It can find a balance between model
complexity and classification ability given limited sample
information. Compared to other machine learning methods,
the SVM has many advantages in that it can overcome
the effects of noise and work without any prior knowl-
edge. The SVM is a non-probabilistic binary linear classifier
that predicts an input to one of two classes for each given
input. It optimizes the linear analysis and classification of
hyperplane formation techniques.

In recent years, SVM has primarily been used in the fields
of text detection, medical treatment, human body recognition,
and vehicle transportation. Omara et al. [24] used pairwise
kernels combined with linear kernels to identify the pairwise
SVM for the effective recognition of human ear images.
The experimental results demonstrated that the recognition
rate of the pairwise SVM was 98.3%, which is better than
that of the traditional SVM. Elleuch et al. [25] designed an
SVM-based deep learning model (DSVM) for handwriting
recognition systems. By using dropout technology, it is pos-
sible to select key data points while efficiently identifying
objects and avoiding overfitting classification. Bron et al. [26]
improved the features according to the weight vector of the
SVM, and then classified dementia. The highlight of this
paper was the application of the weight vector method to the
SVM for feature selection, and the use of SVM for target clas-
sification. The SVM parameters in the optimization decision
stage further improved the recognition performance.

C. NEAREST NEIGHBOR (NN)

The NN algorithm is mainly used for classification and
regression in machine learning. To determine the category
of an unknown sample, all training samples are used as
representative points, the distances between the unknown
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sample and all training sample points are calculated, and the
NN is used. The category is the sole basis for determining
the unknown sample category. Because the NN algorithm is
particularly sensitive to noise data, the K-nearest neighbor
algorithm (KNN) is introduced. The main concept of the
KNN is that when the data and tags in the training set are
known, the test data are input, the characteristics of the test
data are compared with the features corresponding to the
training set, and the most similar K in the training set is found.

Many scholars are committed to improving the research
on KNN algorithms. The improvement methods are roughly
divided into the following types. One type is the KNN
algorithm for improving distance. The method of cosine
KNN combined with entropy proposed by Wang et al. [27]
in 2018 is an example of this type of improvement.
The second type of improvement method is based on the
feature-weighted KNN algorithm, as the original feature
weighting algorithm was not sufficiently accurate [28].
In 2018, Huang et al. [29] improved the problem by using
the DCT-KNN weighting algorithm; this third method is
based on the central KNN. The improved algorithm was pro-
posed by Wang et al. [30] in 2017. This method reduces the
computational complexity of the original nearest feature line
method, and improves the classification performance under
the premise of ensuring the accuracy of the center vector.
It is an improved algorithm based on sparse representation.
In 2008, Wang [31] proposed a sparse representation clas-
sification method. The basic idea of sparse representation
classification is to represent a given test sample as a sparse
linear combination of training samples.

D. RANDOM FOREST (RF)

In machine learning, an RF is a classifier that contains
multiple decision trees, the output of which is determined
by the mode of the category of the individual tree output.
In 2001, Breiman combined the Bagging integrated learning
theory [32] with the random subspace method [33] to propose
an RF algorithm. RF is an integrated learning model based
on a decision tree. It contains multiple decision trees trained
by Bagging integrated learning technology. When inputting
samples to be classified, the final classification result is
output by a single decision tree and vote to decide. The
RF solves the performance problem of the bottleneck of the
decision tree, has good tolerance to noise and outliers, and
has good scalability and parallelism for high-dimensional
data classification problems. The RF is a discriminant and
non-linear model. It supports classification problems, regres-
sion problems, and multi-classification problems, which have
good interpretability.

Scholars have also conducted much research on RF.
Based on this research, rotation forests introduce the feature
transformation of principal component analysis (PCA) [34],
and stratified RF [35] uses the weight of Fisher discriminant
projection. The feature is divided into two parts, namely
strong information features and weak information features.
Subspace selection RFs [36] apply a statistical criterion to
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divide the feature into three parts. The p-value is used to
measure the importance of the feature, and the feature is
divided into either information features or non-information
features. PCA and stratified sampling-based RFs [37] are
proposed as methods for classifying features into information
and non-information features based on the results of PCA
output. In addition, Wang et al. [38, 39] proposed a proba-
bilistically optimized REF, called Bernoulli RF, by using two
Bernoulli distributions to control the selection of segmenta-
tion features and segmentation values.

E. BOOSTING

The Boosting algorithm is an important integrated learning
method. It becomes a strong learner with high accuracy by
combining weak classifiers. The core of the algorithm is to
use the weighted sample training classifier. In the process of
each classifier training, if the samples are correctly classified,
the weight of the samples can be reduced when constructing
the next basic classifier training set. If the sample is incor-
rectly classified, its weight is increased in the next basic
classifier training set.

In 1990, Schapire first constructed a polynomial-level
algorithm, the original Boosting algorithm. This algorithm
can transform weak classification rules into strong classifi-
cation rules. In 1995, Freund and Schapire [40] proposed
the AdaBoost (adaptive boosting) algorithm, which is as
efficient as the original Boosting algorithm, but does not
require any prior knowledge about the performance of the
weak learner. It can be applied to practical problems very
easily. In 2009, Pavan et al. [41] proposed a Boosting frame-
work for semi-supervised learning called SemiBoost. The
algorithm contains the underlying supervised algorithm and
uses unlabeled data to improve its performance. In 2012,
Shen et al. [42] designed a novel Boosting algorithm that uti-
lizes the available Universum data, hence the name UBoost.
In 2013, Chi et al. [43] improved AdaBoost and proposed
a Boosting algorithm (CRBoosting) based on cooperative
representation (CR).

F. BAGGING
The Bagging algorithm is directly based on the self-sampling
method, i.e., sampling in the training set of capacity m using
the method of put-back sampling to form a sampling set
containing m samples. In the Bagging algorithm, each base
classifier uses such a sample set formed by put-back sampling
to train; this forms a plurality of base classifiers, and these
base classifiers are combined to form a Bagging algorithm.
Stability is the key factor in Bagging for the improve-
ment of the accuracy of prediction; Bagging can improve
the accuracy of prediction for uncertain learning algorithms,
but not for stable learning algorithms, and can sometimes
even reduce the accuracy of prediction. In 2003, to improve
Bagging performance, Bryll et al. [44] proposed Attribute
Bagging (AB), a technique that can be used to improve the
accuracy and stability of classifier sets caused by random
subset features. In 2008, Cai et al. [45] proposed a weighted
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subspace method. By observing the diversity of classification
boundaries in feature subspaces, the authors studied how to
use different classification capabilities to improve bagging
performance in classifier space. In 2018, Qian et al. [46]
proposed an optimization method for weight coefficients.
In the classic Bagging method, bootstrap resampling is used
to generate different training sets, and the individual differ-
ence of the base classifier is increased, thereby improving the
generalization ability. Additionally, Jin et al. [47] proposed
in 2018 that the majority of voting methods are used in the
traditional Bagging algorithm to make decisions, and the
performance differences of the base classifiers are ignored;
this results in the superior and inferior classifiers all having
the same decision-making power.

G. OTHERS
To make a representative comparison between different clas-
sifier families and individuals, and to consider other clas-
sifiers that are not specifically discussed, three individual
classifiers belonging to different families are introduced to
make the comparison more comprehensive and balanced. The
three individual classifiers are used for the experimental com-
parison discussed in Section IV. The specific parameters and
configurations of the classifiers are included in Appendix A.
It is worth mentioning that although the selected 3 individ-
ual classifiers are relatively unpopular, they show excellent
classification results in other classifier families. Therefore,
these 3 individual classifiers can represent the best perfor-
mance of other classifier families. However, since these three
individual classifiers come from different families, we cannot
consider them as whole to compare with other families for the
sake of comprehensive consideration.

IV. INDIVIDUAL CLASSIFIERS ANALYSIS

A. METRICS

1) ACCURACY

In machine learning, three parameters reflect the results for
the samples and are respectively predicted on the basis of
precision, recall, and accuracy. Suppose there are two types
in the original sample, wherein:

There is a total of P samples of category 1, and category
1 is assumed as a positive example.

There is a total of N samples of category 0, and category
0 is assumed as a negative example.

After classification:

TP is the samples with category 1 that were correctly
identified as category 1 by the system, and FN is the samples
with category 1 that were misjudged as category O by the
system, Obviously P = TP + FN.

FP is the samples with category O that were correctly
identified as category 1 by the system, and 7N is the samples
with category O that were misjudged as category O by the
system, Obviously N = FP + TN.

The precision is defined as:

TP

P=—r 19)
TP + FP
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which reflects the proportion of real positive samples in the
positive cases determined by the classifier. Recall is defined
as

TP FN
R=——=1——, (20)
TP + FN T
which reflects the proportion of positive cases correctly clas-
sified to total positive cases. Finally, accuracy is defined as

_TP+TN TP + TN
" P+N ~ TP+FN+FP+1TN’

which reflects the classifier’s ability to judge the entire sam-
ple, i.e., a positive decision can be positive, and negative
determination is negative.

The accuracy rate reflects the magnitude of the judgement
error between the result of the systematic determination by a
group of samples and the original result. Because the training
set in this study had only positive samples, and because the
precision is equal to the accuracy, the accuracy was used
as one of the indicators for whether the classifier correctly
classified all the signals in the subsequent training and testing
that were conducted.

21

2) KAPPA COEFFICIENT
In experiments, researchers generally need to investigate
whether the different methods present consistency in results;
the Kappa coefficient is therefore proposed to effectively
measure this consistency. The Kappa coefficient is calculated
based on the confusion matrix, which is a good way to change
the direction of the grid and describe the changes of the data
over time. However, the confusion matrix does not describe
the degree of change from a statistical sense; therefore, there
must be a way, namely the Kappa coefficient, to measure
changes in the nominal variables in statistical methods.

Kappa coefficient differences are mainly used in the com-
parative analysis of two things; ‘“accidental” factors or
“inevitable” factors are often used to check the correctness
of the extent of the test results to determine the real feature.
The Kappa coefficient is a measure of the consistency of the
results of statistical measurement, and is able to calculate
the overall coherence and consistency of the classification
index for consistency tests. It can also be used to measure
the accuracy of the classification.

The value £ is calculated as follows:

k — Po — De ’ 22)
1 — Pe
where p, is the sum of the number of correctly classified
samples for each class divided by the total number of samples,
i.e., the overall classification accuracy.

The Kappa coefficient is calculated to be within -1 to 1,
but usually falls between 0 and 1. It can be divided into
five groups to indicate the consistency of different levels:
0.0-0.20 indicates very low consistency, 0.21-0.40 indicates
general consistency, 0.41-0.60 indicates medium consistency,
0.61-0.80 indicates high consistency, and 0.81-1 indicates
almost identicalness.
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Performance of individual classifiers under average SNR
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FIGURE 2. The top 18 classifiers with the best classification effect under
the average SNR. Obviously, the individual classifiers with the best
performance are mainly from the Boosting, Bagging and RF families.
Among them, the top three are xgboost-p, Bagging-RandomForest-w and

MuliBoostAB-RandomForest-w.

B. PERFORMANCE ANALYSIS
To better compare the classification effects of the six families

of classifiers under different SNRs, the classification effects
of different classifiers were first analyzed at —10 dB, —5 dB,
0 dB, and 2 dB. Finally, the Kappa coefficient and accuracy
of each classifier and family under the average SNR were
obtained.

First, the top 18 classifiers with the best classification were
analyzed and visualized. Figure 2 presents the performance
analysis with the average Kappa coefficient as an indicator.

When the average Kappa coefficient is used as an
index, 8 of the top 18 best classification results belong
to the Boosting family, namely xgboost-p, MultiBoost

AB-RandomForest-w, MultiBoostAB-REPTree-w, Multi
BoostAB-PART-w, MultiBoostAB-J48-w, AdaBoost
M1-J48-w, AdaBoostM1-CDT-w, and AdaBoostM1-Random
SubSpace-w. As mentioned previously, the base classifiers
of these Boosting methods have very good classification
capabilities and are strong classifiers; they can there-
fore exert superior classification effects under comprehen-
sive conditions. There are also 5 classifiers that belong
to the Bagging family, namely Bagging-RandomForest-w,
Bagging-RandomTree-w, Bagging-PART-w, bag-tree-p, and

Bagging-REPTree-w. This demonstrates that the Boosting
and Bagging families are the best classifiers, and present

optimal performance on the entropy feature dataset.

It is worth noting that the RF family, which is one of the

FIGURE 3. The top 18 classifiers with the best classification effects under
the average SNR. In the ranking under the Kappa indicator, the overall
trend of the individual classifiers with the best performance is basically
consistent with the ranking of the accuracy rate. FURIA-w is an exception,
and its accuracy ranking has been slightly improved. This also reveals the
importance of using a comprehensive indicator evaluation.

recognition accuracy, Figure 3 presents a schematic diagram
of the classification effect of the classifier with accuracy as
the vertical axis under the same abscissa as in Figure 2.
It can be seen from Figure 3 that under the average SNR,
the accuracy and the sorting effect of Kappa as the index are
basically consistent, i.e., the same measurement effect on the
classification performance of different classifiers is obtained.
However, it can be found that FURIA-w has increased, i.e., its
accuracy is much higher than that of the surrounding clas-
sifiers, and the measurement effect is different from the
Kappa coefficient. The reason for this is that the Kappa
coefficient represents the ratio of the error reduction between
the classification and the completely random classification,
and its essence is the ratio of the actual consistency to
the non-opportunity consistency. However, the accuracy rate
reflects the magnitude of the error between the results of a
set of samples and the original results. Therefore, considering
the method of calculating the difference between the two, and
because the number and variability of the dataset is relatively
large, the accuracy of FURIA-w is thus increased.

In addition, in general, the RF family, represented by
RandomForest-w, and the integrated classifier, represented by
MultiBoostAB, Bagging, and AdaBoostM 1, always maintain
superior performance under different SNRs. These classifiers
achieve good classification results whether they are analyzed

in terms of the Kappa coefficient or accuracy, reflecting the
superiority and universal applicability of their family classi-

oldest methods, has a better classification effect than other
new classifiers. It ranks in the 5th and 8th places in the top 18,
which demonstrates that the RF family can better classify this
dataset. The remaining classifiers in the top 18 are extratree-p,
RandomCommittee-w, and Decorate-w. Of course, due to the
large size and variability of the dataset, there may be some
errors in the recognition accuracy and Kappa coefficient in
the test, but it is always within a reasonable range.
To more intuitively compare the measurement effects
of the two different indicators of Kappa coefficient and
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fiers. Therefore, these results can be combined to choose the
best individual classifier in different application scenarios.

V. CLASSIFIER FAMILIES ANALYSIS
To measure the classification performance of different clas-

sifier families as a whole, and to compare and analyze them
more comprehensively, Figures 4 and 5 show the box plots
of the classifier families under the average SNR condition.
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FIGURE 4. Box diagram of different classifier families at -10dB. It can be
seen that RF has the largest mean, and the smallest individual difference.
DA has the worst performance and has the lowest kappa value.

In addition, due to the large number of Boosting and Bagging classifiers,
they have large maximum and minimum differences.

There are three main parts in each box plot: the average
of the Kappa coefficients of the classifiers in each family
(denoted by a black square), and the maximum and mini-
mum values of the Kappa coefficient. The highest horizon-
tal line of each box plot represents the maximum value of
the Kappa coefficient in the family, corresponding to the
best-performing classifier in the family, and the lowest hor-
izontal line represents the minimum Kappa coefficient, cor-
responding to the worst-performing classifier in the family.
By observing the maximum, minimum, and mean values of
the box plot, and the spacing between the maximum and
minimum values, each family can be evaluated and analyzed
comprehensively.

Figure 4 is a box plot of six families at -10 dB. It can
be seen that RF is the best-performing classifier family; it
has the largest mean value and a very small interval between
the maximum and minimum values, which means that the
classifiers in the RF family have smaller differences, i.e., each
classifier has a better performance. Stacking is the worst
performer among all families, and its mean and maximum
Kappa coefficients are both zero. The maximum and mini-
mum values of the box plots of the Bagging and Boosting
families are almost the same, but the mean value of Boosting
is slightly higher than that of Bagging. This demonstrates
that, compared with the Bagging family, the Boosting family
has a higher proportion of classifiers with superior perfor-
mance, thus raising the average of the entire Boosting family.
In the box diagram of the SVM, the mean value is in the
middle and lower part of the interval line segment, which
indicates that there is a large proportion of classifiers with
poor performance in the family. In the box plot of the NN
methods, the mean is at the top of the interval, indicating
that most of the classifiers in this family perform well, so the
mean is closer to the maximum of the Kappa coefficient in
the classifier family.

VOLUME 8, 2020

10-

0.8

0.6

kappa Coefficient

0.4

0.2

10-

Bag‘gmg

i

~

0.8 -

kappa Coefficient

0.6 -

0.4-

0.2-

10-

0.8 -

kappa Coefficient

<]

Bag‘gmg

0.6 -

0.4-

0.2 -

<]
<]

Bagging

|

Boosting

Boosting

Boosting

-

m
iy

DA NN RF
Classifier Family

(@)

-_

DA NN RF
Classifier Family

DA NN RF
Classifier Family

(©)

SVM

SVM

SVM

FIGURE 5. Box diagrams of different classifier families at —5 dB, 0 dB,
and 2 dB. The overall performance of the RF is always optimal, with the

highest Kappa coefficient and the smallest individual difference. The

SVM, DA, and NN families perform poorly at a low SNR, but as the SNR
increases, their overall performance is greatly improved, especially at

2 dB, and is comparable to the RF family. Additionally, there are always
individual classifiers that pull down the overall performance of the
Bagging and Boosting families, and their Kappa coefficients do not
improve with the increase

of SNR.
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The three subfigures in Figure 5 present box plots
for different classifier families at -5 dB, 0 dB, and
2 dB, respectively. As the SNR increases, a series of changes
occurs in the box plots of each family. The average of the
box plots of the RF family is also constantly increasing.
Additionally, the box plot still maintains a very small interval,
indicating that the performance of all classifiers in the family
improves as the SNR changes. The Bagging and Boosting
families are somewhat different from the RF family. Both
the mean and maximum values increase with the increase of
SNR, indicating that the performance of most of classifiers
in these families is better with the increase of the SNR.
However, the minimum of the two families does not increase
with the increase of SNR, which means that there are always
some classifiers that have very poor performance. This differ-
ence is reflected in two aspects: first, the recognition accuracy
and Kappa coefficients of these classifiers are very low;
second, the performance of these classifiers does not improve
as the SNR increases.

Combining the box plots of all SNRs, the SVM, DA, and
NN families exhibit the most obvious performance with the
improvement of SNR. First, with the improvement of SNR,
the mean, maximum, and minimum values of the Kappa
coefficients of the three families continually increase. Sec-
ondly, the intervals of the three family box plots continuously
decrease as the SNR is increased. These two points illustrate
the performance of these three series of classifiers, especially
those that are not effective at a low SNR, but that increase
significantly as the SNR increases.

VI. CONCLUSION

With the rapid development of artificial intelligence, robotic
swarms have been widely and highly regarded as one of the
most popular branches of the field. To improve the communi-
cation quality, effectively identify and classify the modulated
signals, and provide a good communication environment and
technical support for robotic swarms, this paper studied the
classification and recognition effects of different families of
classifiers. Specifically, for the 9 different types of modula-
tion signals, a hybrid entropy feature dataset was constructed
by using the selected four entropy features. Based on this
dataset, the performances of 77 classifiers from different
series were then evaluated.

From the perspective of individual classifiers, the exper-
imental results show that Boosting, Bagging, and RF are
the top three classifier families. Among the top 18 classi-
fiers with the best performances, Boosting, Bagging, and RF
account for 8, 5, and 2 classifiers, respectively. In addition,
the FURIA’s Kappa coefficient ranking is different from its
accuracy rate ranking, which results in the higher ranking
of FURIA’s performance. This also illustrates the importance
of using a comprehensive indicator to measure and compare
the performance of the classifier. From the perspective of
family performance, whether the SNR is -10 dB, -5 dB, 0 dB,
or 2 dB, RF always maintains the best performance, i.e., it
has the largest mean and the smallest variance, and its overall
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performance is excellent. The performance of RF is followed
by those of SVM and NN; although they perform poorly
at -10 dB, their mean values gradually increase and their
variances decrease as the SNR increases, demonstrating that
their overall classification performances are improved with
the increase of SNR. The Bagging and Boosting families
have many members, so although their mean and maximum
values increase with the increase of SNR, the minimum value
does not change significantly; thus, there are always individ-
ual classifiers with very poor performance, which seriously
lowers the overall performance.

The work of this paper also has some limitations. For exam-
ple, we currently focus on the comparison and research of the
most popular family classifiers at present, but ignore some of
the classifiers that are very popular but have excellent clas-
sification performance. Moreover, our current comparison
focuses on considering accuracy, but ignores the evaluation of
the robustness of the classifier. In the follow-up work, we will
further expand the research on individual classifiers, add
some unpopular classifiers, and conduct more comprehensive
and thorough exploration and evaluation.

APPENDIX A DETAILS OF INDIVIDUAL CLASSIFIERS
The specific parameters and configurations of the individual
classifiers of the different families involved are as follows.

A. DA

o LDA-eigen-p: uses the LDA function in sklearns, and the
solver is set to eigen.

o LDA-Isqr-p: LDA is solved by the least squares method
(Yeetal., 2007). On-line DA is conducted using the least
squares method (Wang et al., 2012).

o LDA-svd-p: uses the LDA function in sklearns; the
solver is set to svd, even if it is solved by singular value
decomposition. LDA is based on the kernel function and
singular value decomposition (Park et al., 2005).

o Quadratic Discriminant-p: uses the quadratic discrim-
inant function in sklearns. The quadratic discriminant
method is used for classification of wrist EMG signals
(Kang et al., 2011).

o DA-diaglinear-m: uses the fitcdiscr function in MAT-
LAB; the discriminant mode is set to diaglinear.

o DA-quadratic-m: uses the fitcdiscr function in MAT-
LAB:; the discriminant mode is set to quadratic.

o DA-linear-m: uses the fitcdiscr function in MATLAB;
the discriminant is set to linear. Local linear embedding
and the linear DA algorithm are used for face recognition
(Zhang et al., 2004).

B. SVmM

o LibSVM-Linear-w: uses LibLinear library (Fan et al.,
2008) to classify large-scale linear high-dimensional
classifications. It uses the L2 loss (dual) solver, with
parameters C = 1, tolerance = 0.01, deviation = 1.

o LibSVM-Polynomial-w: uses the Polynomial library for
large-scale linear high-dimensional classification, and
the parameter settings remain unchanged.
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LibSVM-Radialbasis-w: uses the Radialbasis library for
large-scale linear high-dimensional classification, and
the parameter settings remain unchanged.
LibLINEAR-w: uses the LibLinear library (Fan et al.,
2008) to classify large-scale linear high-dimensional
classifications. It uses the L2 loss (dual) calculator, and
parameters C = 1, tolerance = 0.01, deviation = 1.
SM-w: a one-to-one classification method using sequen-
tial minimal optimization (Platt, 1998); C = 1, tolerance
L =0.001, rounding error 10-12. Data normalization and
quadratic kernel SVM are used.

SVM-linear-p: uses linear kernels; the penalty coeffi-
cient C of the error term is set to 1.

SVM-poly-p: Kernel functions call polynomial kernels.
SVM-rbf-p: calls the SVC function in sklearns. The type
of the kernel function is set to the Gauss kernel function,
the penalty coefficient C is set to 1, and the coefficient
gamma of the Gauss kernel is set to 0.125.

. NN

Mutilayer-Perceptron-w: an MLP network with
S-shaped hidden neurons. It has unlimited linear output
neurons. Its learning rate is 0.3, momentum is 0.2,
training period is 500, and the hidden neurons are equal.
Mutilayer-Perceptron-CS-w: a classifier that uses back
propagation to classify instances. The learning rate is
0.3, the momentum is 0.2, the training period is 500, and
the hidden neurons are equal.

RBFNetwork-w: uses K-means to select RBF centers
and linear regression to learn classification functions,
and uses symmetric multivariate Gauss and normalized
input. Clustering (or hidden neurons) with a number
equal to half of the training patterns was used in the
present study, ridge = 1073,

MLPClassifier-relu-p: uses one layer of a hidden layer;
the number of neurons in the hidden layer is set to 10,
the ReL U function is used as the activation function and
L2 regularization, and random gradient descent is used
as the optimization method. The maximum number of
iterations is set to 1000, and the learning rate is 0.05.
MLPClassifierlogistic-p:  calls MLPClassifier in
sklearns, uses the logistic function as an activation
function, uses one layer of hidden layer. The number
of hidden layer neurons is set to 10, random gradient
descent is used as the optimization mode, the maximum
number of iterations is set to 1000, and the learning rate
is set to 0.05.

. RF

e Random Forest-w: (Leo Breiman, 2001) uses blog C
inputs and infinite depth trees to implement forests with
500 random tree basic classifiers.

o Rotation Forest-w: (Rodr guez et al., 2006) uses J48 as
the basic classifier, the principal component analysis
filter, and three sets of inputs; the pruning confidence
C =0.25, and there are two modes per leaf.
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Random Forest-p: calls the RF function in sklearns, sets
the number of base classifiers to 10, and uses the Gini
coefficient as the splitting index of the base classifiers.

E. BOOSTING

LogitBoost-w: uses additive logic regression (decision
stump) as the basic learner. Without cross-validation,
it conducts 100% quality basic training and internal
cross-validation once. The possibility of improving the
threshold is 1.79, the shrinkage parameter is 1, and the
number of iterations is 10.

Raced Incremental LogitBoost-w: a competing
Logitboost Committee, in which incremental learning
and decision stump basic classifiers, ranging in size
from 500 to 2000, utilize 1000 verification sets and
logarithmic likelihood pruning.

Adaboost-tree-p: uses the AdaBoost algorithm in
sklearns; the decision tree is selected as the base clas-
sifier, and the number of base classifiers is set to 50.
Adaboost-tree-m: uses the AdaBoost.M2 algorithm in
MATLAB, and 50 decision trees are upgraded.
LPBoost-tree-m: uses the decision tree as the base clas-
sifier, the maximum number of tree splitting is no more
than 6 times, and the LPBoost algorithm in MATLAB is
called.

RUSBoost-tree-m: he base classifier is set to 50, which
is upgraded using a decision tree.

TotalBoost-tree-m: 50 decision trees are upgraded to be
more robust than LPBoost.

GBDT-p: the number of base classifiers is set to 50 and
the learning rate is 0.3. The Friedman mean square error
is used as the node splitting index of the decision tree.
XGboost-p: calls the XGboost function package and
uses the decision tree with the maximum depth of 4 as
the base classifier. The shrinkage step is set to 0.3.
AdaBoostM 1-Decision Stump-w: uses the decision
stump basic classifier to implement the same AdaBoost.
M1 method.

AdaBoostM1-J48-w: set of Adaboost.M1 that combines
J48 basic classifiers.

AdaBoostM I-RandomSubSpace-w: an Adaboost.M1 set
that combines RandomSubSpace basic classifiers.
AdaBoostM1-RandomTree-w: an AdaBoost.M1 set that
combines RandomTree basic classifiers.
AdaBoostM1-REPTree-w: a set of AdaBoost.M1 that
combines REPTree basic classifiers.
AdaBoostM1-CDT-w: an AdaBoost.M1 set that com-
bines CDT basic classifiers.
AdaBoostM1-ExtraTree-w: a set of AdaBoost.M1 that
combines ExtraTree basic classifiers.
AdaBoostM1-HoeffdingTree-w: a set of AdaBoost.M1
that combines the basic classifiers of HoeffdingTree.
AdaBoostM1-LADTree-w: a set of AdaBoost.M1 that
combines the basic classifiers of LADTree.
MuliBoostAB-Decision Stump-w: a set of MultiBoost.
It wuses the decision stump basic classifier,
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three sub-committees, 10 training iterations, and 100%
quality to perform basic training based on AdaBoost and
Wagging. The following MultiBoostAB ensemble uses
the same option.

MuliBoostAB-DecisionTable-w: combines MultiBoost
and DecisionTable, both of which have the same param-
eter settings as above.

MuliBoostAB-IBK-w: uses MultiBoostAB with IBK
basic classifiers.

MuliBoostAB-J48-w: trains a set of J48 decision trees
using pruning confidence C = 0.25 and two training
modes per leaf.

MuliBoostAB-LibSVM-w: uses the LibSVM-based clas-
sifier with the best C selected by the SVM-C classifier
and the Gauss kernel distribution. It is compared with
previous reports, although strong classifiers are not rec-
ommended as base classifiers in principle.
MuliBoostAB-Logistic-w: is combined with the Logistic
base classifier.

MuliBoostAB-Multilayer Perceptron-w: uses the same
basic MLP classifier as Multilayer Perceptron-w
(another strong classifier).
MuliBoostAB-NaiveBayes-w:
basic classifier.
MuliBoostAB-OneR-w: uses OneR basic classifier.
MuliBoostAB-PART-w: is combined with the basic clas-
sifier of PART.

MuliBoostAB-RandomForest-w: is combined with a RF
base classifier. Although RF itself is a whole, it does not
seem to be very useful to compare the MultiBoostAB
sets of RF sets.

MuliBoostAB-RandomTreew: uses a random tree with
the same options as above.

MuliBoostAB-REPTree-w: uses the REPTree basic clas-
sifier.

uses the NaiveBayes

F. BAGGING

1800

Bagging-Decision Stump-w: uses 10 bagging iterations
of decision stump basic classifiers.
Bagging-DecisionTable-w: uses DecisionTable and
BestFirst, and searches forward for input selection,
retaining  one  validation and  maximizing
accuracy.

Bagging-HyperPipes-w: uses the HyperPipes basic
classifier.

Bagging-IBK-w: uses the IBK-based classifier, which
uses the cross-validation of linear NN search and
Euclidean distance to develop KNN classification
adjustment K.

Bagging-J48-w: the basic classifiers of J48.
Bagging-LibSVM-w: used for the Gauss kernel of Lib-
SVM and has the same options as a single LibSVM
classifier.

Bagging-Logistic-w: has infinite iterations and logarithmic
likelihood ridges 1078 in the Logistic basic classifier.

Bagging-LWL-w: uses a local weighted learning basic
classifier with linear weighted kernel shape and
Decision Stump basic classifier.

Bagging-Multilayer Perceptron-w: has the same config-
uration as a single Multilayer Perceptron-w.
Bagging-NaiveBayes-w: has a NaiveBayes classifier.
Bagging-OneR-w: uses the OneR basic classifier, with
at least six objects per Bucket.

Bagging-PART-w: has at least two training modes per
leaf, trimming confidence C = 0.25.

Bagging-Random Forest-w: has 500 trees of forest, infi-
nite tree depth and blog C inputs.
Bagging-RandomTree-w: uses random tree basic
classifier without backfilling. blog2 C random input,
infinite tree depth and two training modes per leaf are
investigated.

Bagging-REPTree-w: uses REPTree with two patterns
per leaf, with a minimum category difference of three
times, reducing error pruning and infinite tree depth.
Bagging-knn-p: uses KNN as the base classifier,
n-neighbors = 5, and set the number of base classifiers
to 10.

Bagging-tree-p 10 Bagging iterations were performed
on decision tree classifiers using Gini coefficients as
splitting indices.

Bagging-logistic-p: the logistic regression classifier is
used as the base classifier for 10 Bagging iterations,
in which the logistic regression classifier uses L2 reg-
ularity and the logarithmic likelihood loss is not higher
than that.

Bagging-tree-m: set the maximum number of splits of
the decision tree to no more than 6.

G. OTHERS
o Extratree-p: integrates 10 decision tree-based classi-

fiers.

o RandomCommittee-w: is a collection of random trees

e FURIA-w: 1is

(each tree is constructed with a different seed) whose
output is the average of the basic classifier output

short for “Fuzzy Unordered Rule
Induction Algorithm”, it learns fuzzy rules instead of
conventional rules and unordered rule sets instead of rule
lists.
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