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ABSTRACT Inherited retinal diseases cause severe visual deficits in children. They are classified in outer
and inner retina diseases, and often cause blindness in childhood. The diagnosis for this type of illness
is challenging, given the wide range of clinical and genetic causes (with over 200 causative genes). It is
routinely based on a complex pattern of clinical tests, including invasive ones, not always appropriate
for infants or young children. A different approach is thus needed, that exploits Chromatic Pupillometry,
a technique increasingly used to assess outer and inner retina functions. This paper presents a novel Clinical
Decision Support System (CDSS), based on Machine Learning using Chromatic Pupillometry in order to
support diagnosis of Inherited retinal diseases in pediatric subjects. An approach that combines hardware
and software is proposed: a dedicated medical equipment (pupillometer) is used with a purposely designed
custom machine learning decision support system. Two distinct Support Vector Machines (SVMs), one for
each eye, classify the features extracted from the pupillometric data. The designed CDSS has been used
for diagnosis of Retinitis Pigmentosa in pediatric subjects. The results, obtained by combining the two
SVMs in an ensemble model, show satisfactory performance of the system, that achieved 0.846 accuracy,
0.937 sensitivity and 0.786 specificity. This is the first study that applies machine learning to pupillometric
data in order to diagnose a genetic disease in pediatric age.

INDEX TERMS Artificial intelligence, clinical decision support systems, machine learning, pupillometry,

python, rare diseases, retinitis pigmentosa, retinopathy, support vector machine.

I. INTRODUCTION

Inherited Retinal Diseases (IRDs) represent a significant
cause of severe visual deficits in children [1]. They frequently
are cause of blindness in childhood in Established Market
Economies (1/3000 individuals). IRDs can be divided into
diseases of the outer retina, namely photoreceptor degen-
erations (e.g., Leber Congenital Amaurosis, Retinitis Pig-
mentosa, Stargardt disease, Cone Dystrophy, Acromatopsia,
Choroideremia, etc.), and diseases of the inner retina, mainly
retinal ganglion cell degeneration (e.g. congenital glaucoma,
dominant optic atrophy, Leber hereditary optic neuropathy).
Both conditions are characterized by extremely high genetic
heterogeneity with over 200 causative genes identified to

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

date, which represent a remarkable obstacle to a rapid and
effective diagnosis (https://sph.uth.edu/retnet/disease.htm),
also considering that the same gene could cause different and
heterogeneous clinical phenotypes.

A. CURRENT CLINICAL EVALUATION METHODS

The clinical evaluation of IRDs is routinely based on a com-
plex pattern of clinical tests, including invasive ones, that
are not always appropriate for infants or young children.
For example, electrophysiological testing, that represents the
most informative clinical investigation for the diagnosis of
inner and outer retinal diseases, often requires sedation of the
children. Sedation affects the retinal response and requires
a complex healthcare environment (e.g., operating room,
pediatric, anesthesiologist, dedicated instrumentation, etc.)
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with high costs for the health system. Therefore, the clinical
diagnosis is not easy and requires specialized centers. Conse-
quently, it takes a long time for the young patients and their
relatives to receive a correct and complete screening.

In many cases the electrophysiological responses are
below the noise level (for example, extinguished scotopic
electroretinogram response is the condition confirming the
diagnosis). These responses are therefore not suitable for
monitoring changes in visual functionality, that is relevant for
evaluating disease progression and therapy efficacy.

B. PUPILLOMETRY
A novel approach to support the diagnosis of IRDs would
be useful. To this regard, chromatic pupillometry has been
proposed as a highly sensitive and objective test to quantify
the function of different light-sensitive retinal cells and, there-
fore, it has been shown helpful to detect the retinal dysfunc-
tion caused by IRDs as summarized in the following [2]-[6].
Photoreceptor cells (rods and cones) exhibit fast temporal
kinetics and cause a brisk pupillary constriction in response
to light, whereas the inner retinal melanopsin containing
intrinsic photosensitive Retinal Ganglion Cells (ipRGCs)
exhibits slower temporal kinetics and elicits a sustained
pupillary constriction to light stimuli, persisting after light
cessation [2]. The relative contributions of the three recep-
tor types (rod, cone, and melanopsin photopigments) to the
Pupillary Light Reflex (PLR) have been examined by manip-
ulating the characteristics of large-field (90) flash stimuli
and the adaptation conditions (light vs. dark adapted) [3].
For example, high-luminance, long-wavelength (red) flashes
presented against a rod-suppressing adapting field elicit
a PLR that is predominately cone-mediated whereas low-
luminance, short-wavelength (blue) flashes presented to the
dark-adapted eye elicits a PLR that is primarily rodme-
diated. For high-luminance, short-wavelength flashes pre-
sented to the dark-adapted eye, there is an initial transient
pupil constriction (rod- and cone-mediated) that is followed
by a melanopsin-mediated sustained constriction that can
last for more than 30s after stimulus offset. The prolonged
melanopsin-mediated constriction has been used in clinical
protocols to assess inner-retina function [4]—[6]. Thus, the use
of chromatic pupil responses may be a novel way to diag-
nose and monitor diseases affecting either the outer or inner
retina [2]. This evidence suggested that a clinical decision
support system (CDSS) based on chromatic pupillometry
could be developed in order to support diagnosis of IRDs.

C. THE RESEARCH PROJECT

Our activity was performed within a research project, which
main goal is defining effective protocols and systems for an
early diagnosis and monitoring through chromatic pupillom-
etry. The team that worked to this project is structured in three
operative units: Department of Information Engineering of
the University of Florence, Eye Clinics at the University of
Campania Luigi Vanvitelli and at the University of Milan.
This team designed a novel CDSS for diagnosis of Retinitis
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Pigmentosa (RP) in pediatric subjects. The activity included
the following steps:

o Development of the pupillometric based protocol [7].
In the first phase of the project, the team focused on
subjects with RP (one of the IRDs with the highest
prevalence) aged eight to 16 years old.

o Design and creation of an Information Technology (IT)
cloud web-platform by the operative unit of Florence.
The components of other operative units have taken
advantage of this web-platform to share results and data
obtained in the project’s partner institutions [8], [9].

o Analysis of Machine Learning (ML) techniques which
could be instrumental in the development of the CDSS
(see the next Section)

« Deployment of the overall system in an existing web
application realized within the same project [8], [9].

D. STRUCTURE OF THE ARTICLE

Section II of this paper briefly illustrates the analysis of
the state of the art carried out before approaching the pre-
sented research. Section III provides some information about
patients that contributed to this activity and describes the sys-
tem structure. Specifically, this section describes the acquisi-
tion of raw data by the pupillometric equipment, the analysis
of the filtering chain for removing artefacts, the extraction
of the features of interest and the implementation of the
ML classifier itself. Section IV and Section V, respectively,
illustrate the obtained results and the system performance.

Il. STATE OF THE ART

A. MACHINE LEARNING

ML tools have been proven as very effective in supporting the
decision process, as widely confirmed by literature [10]-[13].
One of the most important applications can be found in the
clinical domain [14], [15]. Indeed in previous works the
authors successfully used ML for creating CDSSs dedicated
to chronic diseases such as congestive heart failure [16],
[17] [18] or chronic obstructive pulmonary disease [19].
A considerable body of literature supports the extreme effec-
tiveness of these techniques also in the field of ophthal-
mology, as recently reviewed by Hogarty et al. [20] and by
Kapoor [21]. The problem arises when dealing with ML tech-
nique and chromatic pupillometry applied for the diagnosis
of IRDs.

B. LITERATURE OVERVIEW

A study of the state of the art was developed at the beginning
of the activity. The search for previous articles in the litera-
ture was done on Scopus, IEEE Xplore and PubMED, using
the following keywords: ““clinical decision support system”’,
“eye diseases”, ‘“rare eye diseases”, “CDSS”, “DSS”,
“pupillometry”, “retinitis pigmentosa’ and ‘‘machine learn-
ing”. No articles including all the above keywords were
found. None of the found articles use both pupillometry and
ML techniques. Most of the found articles refer to ““clinical
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decision support system”, ‘“machine learning” and “eye
diseases”. The number of studies decreases when it deals
with systems for “rare diseases”, ‘“‘retinitis pigmentosa’ and
“pupillometry”’. Among all the found articles, the seven
resumed below were chosen based on regency and variety,
so as to have different views of general approaches when ML
interfaces with eye diseases. Brancati et al. [22] apply ML
supervised techniques for detecting pigment signs on fundus
images acquired with a digital retinal camera to study patients
affected by RP. Gao et al. [23] apply the ML random forest
algorithm on optical coherence tomography (OCT) images
to support the diagnosis of choroideremia by detecting intact
choriocapillaris. Four more articles apply similar supervised
ML algorithms to common eye diseases such as age-related
macular degenerations [24], [25] diabetic retinopathy [26]
and glaucoma [27]. Gargeya et al. [28] bring a different
approach to support the diagnosis of diabetic retinopathy
using deep learning. The results from the studies just cited
are summarized in Table 1.

IIl. MATERIALS AND METHODS

A. PARTICIPANTS AND EXPERIMENTAL SETUP

This study was approved by the local Ethics Committees
of the involved clinical centre (University of Campania and
University of Milan) and was conducted in accordance with
the guidelines of the Declaration of Helsinki [29]. All the
involved participants received detailed information on the
research protocol and signed an informed consent form prior
to the measurement sessions. 20 patients affected by RP and
18 control subjects, characterized by the absence of any ocu-
lar diseases and an absolute refraction error lower than 5 diop-
tres, were enrolled in the present multi-centric research study.
The subjects were recruited and evaluated at the Eye Clinic
of the Multidisciplinary Department of Medical, Surgical and
Dental Sciences (University of Campania Luigi Vanvitelli,
Naples), and at the Department of Clinical Sciences and Com-
munity Health of the University of Milan. Subjects underwent
a standardized evaluation of pupillary response to chromatic
stimulation, carried out with a customized DP-2000 binocular
pupillometer (NeurOptics, US) showed in Fig.1.

This pupillometry system enables the simultaneous imag-
ing and assessment of both eyes and, furthermore, supports
the automatic detection of the pupil contour and the video
tracking of its dynamic response to red (A = 622 nm),
green (A = 528 nm), blue (A = 462 nm) and white
light stimuli. In detail, videos were captured at a 30-Hz
frame rate, with an 8-bit grey-level resolution and a spatial
resolution of 0.05 mm. In order to build a homogeneous
set of pupillometric data, a standard protocol was agreed
between the different participating institutions, in accordance
with the current literature [2], [6], [30]—-[32]. The identified
stimulation sequence required a proper customization of the
original firmware, carried out by the manufacturer. Expressly,
each measurement session included 10 min of preliminary
adaptation to dark, followed by six different stimulation
patterns, each applied consecutively to both eyes for three
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FIGURE 1. DP-2000 binocular pupillometer(NeurOptics, US).

times. Thus, each subject was associated with 18 traces for
each pupil, i.e. 36 signals. More specifically, low-intensity
impulses against a dark background were used for evaluat-
ing rods’ function; high intensity impulses for evaluation of
intrinsically photosensitive retinal ganglion cells’ (ipRGCs)
function. Moreover, a high-intensity stimulation on a blue
background was performed in order to evaluate cones. Each
light stimulus lasted 1 s. The phases of the protocol are
summarized below, in Fig. 2. Eight out of the 38 test subjects
were associated with significantly corrupted signals and were
accordingly discarded from the study. Indeed, pupillometric
responses may be affected by blinking or eye movements,
which could affect the measurement of pupil diameters. The
system is actually capable of blinking detection, although
this capability was not included in this first study: in the
future the protocol could be optimized in order to repeat the
stimulation in case of unreliable measurements. The quality
of the remaining 30 test subjects was judged by the clinical
partners in Naples and Milan. As evident by comparing the
signals in Fig. 3 and Fig. 5, this evaluation could be performed
by simply plotting the signals and assessing their shapes.

B. CLINICAL DECISION SUPPORT SYSTEM

The main stages for the implementation of the RP classifier
are shown in Fig. 4, namely: import and pre-processing of the
pupillary diameter signals, pupillary feature extraction and
reduction, hyperparameters optimization and, finally, training
of the supervised classifier. These stages are discussed in the
following paragraphs.

1) SIGNAL PRE-PROCESSING
A first preliminary stage of the CDSS is devoted to the
analysis of the raw files, produced by the binocular pupil-
lometer after each measurement session, for the export of the
following relevant data:
« Patient ID;
« Bilateral pupillary diameter signals related to each phase
of the protocol;
o Diagnosis, i.e. ‘“Pathologic” or ‘“Healthy”, as per-
formed by a clinical specialist.
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TABLE 1. Literature overview of studies using ML to support diagnosis of ocular diseases.

Article Reference Algorithm Dataset Performance Evaluation Input Results
On G1:
Accuracy: 99.35%
Sensitivity: 79.40%
Specificity: 99.51%
Precision: 58.92%
Brancati et al. (2018) [22] AdaBoost.M1 RIPS dataset (120 images  Hold out Fundus F-measure: 62.48%
from four patients dupli- images On G2:
cated in two subsets Gl
and G2 classified by spe- Accuracy: 99.35%
cialists) Sensitivity: 75.66%
Specificity: 99.57%
Precision: 63.50%
F-measure: 63.70%
Gao et al. (2017) [23] Random forest 30 images from 19 partici- 10 1mages fortraining o op oo Jaccard index: 0.8140.12
pants 20 images for test
Accuracy: 92.16%
Garcia-Floriano et al. (2017) [24] SVM 27 healthy Leave-one-out Fundus Precision: 93.20%
24 with drusen images Recall: 92.20%
F-measure: 92.10%
1447 healthy
40 central serious
Accuracy: 99.92%
. chorioretinopathy 40 training .
Khalid et al. (2017) [25] SVM OCT images Sensitivity: 100.00%
650 retinal edema 2819 validation
Specificity: 99.86%
752 age-related macular
degeneration
Accuracy: 92.76%
Piri et al. (2017) [26] Custom ensemble ~ >1.4 million diabetic pa-  the exact partition Blood test Sensitivity: 90.22%
algorithm tients from the Cerner for training and results and Specificity: 95.30%
Corporation’s Health Facts ~ validation set are demographic
data warehouse not specified data AUC: 97.90%

Kim et al. (2017) [27]

Random forest

297 with glaucoma

319 training

80 validation

Retinal nerve

Accuracy: 98.00%
Sensitivity: 98.30%

202 without glaucoma fiber  layer  Specificity: 97.50%
100 test thickness
and  visual AUC:97.90%
field data
Sensitivity: 94.00%
Gargeya et al. (2017) [28] Custom ) deep 75137 ima‘ges from eye-  5-fold :s‘traFiﬁed Eundus Specificity: 98.00%
convolutional PACS public dataset cross-validation images

neural networks

AUC: 97.00%

As detailed in the following, the field diagnosis is used to
label the subjects and their related data during the training
process of the ML system, whereas the above diameter sig-
nals are used to extract clinically motivated features of the
pupillary reactivity and for building the input dataset of
the supervised classifier. However, before the extraction of
the feature set, the raw pupillometric signals must be properly
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processed in order to attenuate noisy components and, partic-
ularly, to cope with potential eye-blink artefacts. Involuntary
eye blinking during video capture is indeed associated with
abrupt spurious spikes, which might significantly corrupt the
resultant traces of the pupil diameter, thus reducing the relia-
bility of the features of interest. In detail, the pre-processing
module first involves the application of a Savitzky-Golay
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10 min dark adaptation

Low-intensity red light

Low-intensity blue light

High-intensity red light

High-intensity blue light

3-min light adaptation

High-intensity red light

High-intensity blue light

416 | 432 | 448 |464 | 494 | 524 | 554

FIGURE 2. Phases of pupillometric protocol, central color is the light one and the side color represent background; numbers in the
central part are the intensity of the light stimuli and on top of the scheme there is time express in seconds.

pupil diameter (mm)

time (s)

FIGURE 3. Example of irrecoverable signal, the quantity and size of the spikes and artefacts makes it impossible to extract features.

(SG) of a third-order smoothing filter [33] and window span
of 55 samples. This FIR filter generally improves the orig-
inal SNR levels without greatly distorting the underlying
pupillometric signal. Afterwards, the residual between the
original data and the SG-smoothed signal is computed: blink-
related artefacts are then identified with values exceeding a
properly tailored maximum threshold (0.2 mm) and removed
accordingly. Finally, possible gaps produced by the above
operation are filled by means of a cubic interpolation, and
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the resulting trace is once again filtered by a low-pass filter
so as to give final smoothness to the pupillary trace. A sample
filtered signal is shown in Fig. 5.

2) FEATURE EXTRACTION

We selected the most predictive features based on the follow-
ing literature [3], [4] [5], [6] [34]. After the pre-processing
stage, the following 8-elements vector of features is extracted
from each pupillometric signal:

34953



IEEE Access

E. ladanza et al.: Automatic Detection of Genetic Diseases in Pediatric Age Using Pupillometry

Pupillometric
Data

Features
extraction

|

Features
reduction

Hyperparameters optimization

Leave one out
Grid search

Grid values of
Kernel, y, C

Best
accuracy
SVM

Legend:
Pupillometric

Data Right eye data flow D

Left eye data flow D

Features
extraction

|

Features
reduction

Hyperparameters optimization

Leave one out
Grid search

Grid values of
Kernel, y, C

Best
accuracy
SVM

FIGURE 4. Data analysis, selection of features and optimization of the SVM parameters.
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FIGURE 5. Example of filtered signal, short spikes are easily removed.

« MAX: maximum pupil diameter at baseline;

o MIN: minimum diameter in correspondence with the
peak constriction;

« DELTA: absolute difference between the above values;

o CH: percentage maximum constriction (with respect to
the pupillary diameter at rest);

o LATENCY: delay between the light stimulus and the
onset of the pupillary constriction;

« MCV: mean constriction velocity;

« MDV: mean dilation velocity;

o CVmax: maximum constriction velocity.

The above eight features, calculated on the filtered signal,
were chosen in accordance to the literature about pupil-
lometry in several pathologies [35]-[37] and in biometric
authentication [38]. The same features are regularly used by
the clinicians involved in this project and are also provided
by the equipment itself in its output files. The time interval
used to derive the above features was properly restricted so
as to minimize the risk of inaccurate values: namely, MAX
and LATENCY are computed in the first second whereas
the others are obtained using a 5-s window. The adopted
features are represented below, in Fig. 6. The rationale behind
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TABLE 2. Pupillary reactivity: extracted features.

Feature Description Expression
MAX maximum diameter at baseline MAX(r(1))
MIN minimum diameter corresponding to the peak constriction MIN(r (1))
DELTA difference between Max and Min MAX-MIN
CH percentage maximum constriction Dﬁ ﬁf{A
LATENCY  delay between stimulus and onset of the pupillary constriction =~ Computed using custom script
MCV mean constriction velocity %
MDV mean dilation velocity %
80% ~tmin
CVmax maximum constriction velocity MIN (dzl—(tt)>
R _
Maximum
14
<>
6
Latency o

Contraction

E
E speed
g Dilatation
z 4
E speed
L
=
33
Minimum

2

1

[+]

0 1 2 3 a 5
time (s)

FIGURE 6. Graphic representation of features.

the definition of the pupillary LATENCY (see Table 2) is
that the contraction starts a few milliseconds after the light
stimulus is applied. In detail, this parameter is estimated as
follows: the first derivative d’(¢) of the pupillometric sig-
nal is computed; then, starting from its absolute minimum,
the array of values is checked backwards and the time instant
corresponding to d’(r) = 0 is identified. The detection of
an inflection point is avoided since, despite the preliminary
SG-smoothing, d’(¢) signals are characterized by significant
noisy components and zero-crossings are less sensitive to
flickering signals. Although this might seem the easiest strat-
egy, it was chosen not to identify the inflection point because
it is not possible to have a perfectly smoothed signal which
determines a noisy derivative graph. Conversely, the zero-
crossing detection is less influenced by flickering signals.
In Fig. 7 the latency is highlighted in red while the zero axis in
green.

VOLUME 8, 2020

3) SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are supervised linear binary
classifiers, first introduced by Vapnik [39]. From a conceptual
standpoint, SVMs are formally based on the definition of an
optimal linear hyperplane of equation [40]:

wx+b=0 @))

which separates the feature space into two regions, corre-
sponding to the binary classes of the training data. Specif-
ically, the identification of the above decision boundary is
performed via the maximization of the geometric margin
between the classes:

@

1
Mgym < —-.
[[wll

Maximizing Mgy is theoretically equivalent to minimizing
the term %| |w||2; accordingly, the training process of an SVM

34955



lEEEACC@SS E. ladanza et al.: Automatic Detection of Genetic Diseases in Pediatric Age Using Pupillometry

pupil diameter (mm)

o kN W B U o N ® ©

°
S

3 4 5
time (s)

°

°

. V’\/\/\w‘\\/\, ENADIEIW.N =N [\ AM AR

pupil diameter (mm)

FIGURE 7. Graphic representation of latency and its calculation.

classifier corresponds to the following optimization problem:
1 2
= . 3
S 1wl 3
subject to:
yiw'x+b)>1 i=1,...,N. 4

where y; € (—1, 41) are the labels identifying the binary
classes. However, in practical classification tasks, real input
datasets often cannot be directly separated by a linear bound-
ary. Thus, during training, some instances may be allowed to
lie either inside the margin Mgyy, or on the wrong side of
the decision hyperplane, leading to the so-called soft margin
SVM:

N

1

5||w||2+c§ & )
i=1

subject to:
yiwx+b)>1—g i=1,...,N. 6)

where ¢; are the so-called slack variables, corresponding to
misclassified input instances, whereas the cost C(C € Rg) is
an internal parameter of the classifier. This boundary constant
determines the relative weight given to training accuracy and
margin Mgyy maximization. More specifically, high values
of C will penalize the presence of misclassified cases, thus
leading to narrow margins between the classes; on the other
hand, small coefficients would tolerate the incorporation of
misdetections during the training process, and are thus related
to wider geometric margins. Numerically, the above opti-
mization is performed via the method of Lagrange multipliers
[41], which identifies boundary feature vectors of expression:

N
W= dyix; (M
i=1
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3
time (s)

In the above equation, the input observations x; related to
non-zero a; coefficients are the support vectors, which lie
on the decision hyperplane or inside the corresponding mar-
gin, thus defining the boundary between the classified clus-
ters. The SVM, however, might achieve improved training
accuracy through a nonlinear transformation of the origi-
nal training dataset. Indeed, this strategy can lead to the
generation of more flexible boundaries with respect to an
elementary linear hyperplane. Therefore, in addition to the
original linear SVM, the present study also explored the
performance attainable by transforming the pupillometric
features according to a Gaussian radial basis function (RBF):
D — x5) = e~V INiY Hz, a popular kernel function which
is widely adopted in SVM-based classification, for handling
non-linearly separable data clusters. Its scale y is the sec-
ond tenable internal parameter of the SVM. Namely, small
values of y favour the identification of smooth classification
boundaries which, however, may be comparable to a linear
hyperplane for extremely small y and thus lead to underfit-
ting. Conversely, high values tend to produce more flexible,
sinuous margins; still, ¥ needs proper configuration since
very high values may, on the other hand, compromise the
generalization capability of the SVM due to overfitting of the
training dataset.

4) FEATURE REDUCTION

According to the adopted measurement protocol, previously
detailed in the ““Participants and experimental setup’ section,
a total of 288 features was extracted from the 36 pupil reac-
tivity signals, available for each subject to be classified. Due
to the relatively high number of features, feature reduction
represented a key preliminary operation which was applied to
avoid overfitting of the training dataset. In ML applications,
a general rule of thumb is to keep the dimension of the input

VOLUME 8, 2020



E. ladanza et al.: Automatic Detection of Genetic Diseases in Pediatric Age Using Pupillometry

IEEE Access

TABLE 3. Strategy for feature reduction.

Stimuli ~ Feature  Operation on consecutive stimuli
(1,2) Delta Min
3,4) Min Max
(5,6) Delta Min

feature space below one fifth of the total number of obser-
vations, i.e. the best subjects. In the present study, the set of
selected features comes from the results of a recent study [34],
which has identified a subset of pupillary features with supe-
rior discriminant capability regarding the clinical diagnosis
of RP: in detail, the values of the maximum pupil diameter
(i.e. MAX) before stimuli 1 and 2 appear to be significantly
higher in RP patients which, furthermore, are associated with
a reduced pupillary constriction (i.e. higher MIN following
stimuli 1, 2, 3 and 4; lower DELTA for all stimuli except 6).
Consistently, the following six features were chosen for char-
acterizing each subject: DELTA|, DELTA;, MIN3, MINy,
DELTAs, DELTAg. Although there is an evidence for con-
sidering also MAX;, MAXj,, MINj, and MIN», these four
properties are implicitly related to DELTA | and DELTA;. and
were thus discarded in order to keep the final dimension of the
feature space as low as possible (see the above consideration).
Among the three repeated measurements available for each
light stimulus, the features related to just one acquisition were
selected, according to criteria reported in Table 3.

5) SVM TRAINING AND SUBJECT CLASSIFICATION
The overall scheme of the developed CDSS is shown in Fig. 8.
In general, the system is designed (so as) to separately label
the left and right eyes and, then, to classify the related subject
by means of an OR logical operator, i.e. the subject is diag-
nosed with RP if at least one of the eyes is assigned with the
“Pathologic” label (thus improving the global sensitivity of
the CDSS). This choice is related to the fact that the artifacts
might be not equally distributed between the two eyes. For
example, a patient with a frequent blinking in his/her left
eye would generate a cleaner signal for his/her contralateral
eye. An SVM was selected as supervised (eye) classification
algorithm because of its proven solidity and versatility for
classification problems [42]. Each SVM classifier was fed
with the pupillometric feature vectors acquired from the left
and right eyes of 30 of the enrolled subjects (see Participants
and experimental setup). As previously mentioned, linear
and RBF kernels were alternatively used for both the left-
and right-eye classifiers, so as to explore and compare their
performances. The optimization of the hyper-parameters of
the SVM, i.e. the boundary constant C and the scale A of the
non-linear RBF kernel, represents a fundamental step for the
achievement of improved classification performances (see the
above paragraph ‘““Support Vector Machines””).

The tuning process was carried out separately for each eye
by means of a grid search [43], [44](over the values listed
in Table 4) and a leave-one-out cross-validation strategy,
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TABLE 4. Different parameters tested for optimization.

Parameter Values

Kernel Linear, RBF

C (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1,0.5, 1, 5, 10, 50, 100, 500, 1000)

¥ (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,

0.1,0.5, 1, 5, 10, 50, 100, 500, 1000)

aimed at identifying the best combination of internal parame-
ters associated to the highest average classification accuracy
over the 30 subjects [45]. This approach allowed us to exclude
possible over-fitting. It also ensured that every single element
in the available dataset was exploited both as training set and
as validation set, with no fortuity in the partitioning of the
feature vectors, as opposed to a k-fold cross-validation (see
Fig. 9). Detailed description of this method could be found in
Chapter 7 of [45] and in [46].

IV. RESULTS

The optimal combination of the SVM hyperparameters,
returned by the data-driven tuning process, are reported
in Tables 5 and 6, alongside the related classification accu-
racy achieved on the 30 available subjects. Tables 7 and 8
summarize sensitivity, specificity and accuracy for the final
ensemble model (schematized in Fig. 8). In details, these
performance scores were derived by comparing the actual
class of the subject - as assigned by the physician - with the
class obtained by applying an OR logical operation to the
two labels separately returned by the tuned SVMs for each
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TABLE 5. Best parameters for left and right eye features with linear
kernel.

Eye Kernel C Accuracy
Right  Linear 100 86.7%
Left Linear 1 83%

TABLE 6. Best parameters for left and right eye features with RBF kernel.

Eye Kernel C ¥ Accuracy
Right RBF 1000 0.001 80%
Left RBF 1 0.1 90%

eye. As expected, this strategy determines an increase in the
overall sensitivity of the CDSS. It is worth to specifying that
only one table is reported because both the linear and RBF
kernel functions gave the same results in the ensemble logic.

V. DISCUSSION

IRDs are degenerative diseases that affect the eye starting
from the first years of life. Accurate diagnosis of inher-
ited retinal disease is a relevant clinical issue. In clinical
practice, the diagnosis relies on invasive test, particularly
electroretinogram, which requires sedation in children/non-
collaborative patients. This aspect brings the necessity of
a non-invasive and accurate system to make fast diagnoses
in pediatric age. We propose the adoption of chromatic
pupillometry to support the screening and we achieved an
excellent sensitivity 93.7 % (due to one false negative) with
a satisfactory specificity (78.6 %). We privileged the sen-
sitivity over the specificity because this novel technique
will be, at least in these first stages, mostly applied for
screening purposes. It is planned to test the accuracy of the
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TABLE 7. Leave-one-out validation of the ensemble model: performance.

Accuracy

86.7%

Sensitivity

93.7%

Specificity
78.6%

TABLE 8. Leave-one-out validation of the ensemble model: confusion
matrix.

Pathologic ~ Healthy
Pathologic 15 1
Healthy 3 11

method in a successive study on a larger sample of pediatric
patients, which should undergo electroretinogram to confirm
the diagnosis. The non-invasiveness is granted by adopting
the proposed pupillometric method, which requires no spe-
cific patient preparations with drugs or collyriums. If com-
pared with other standard diagnostic techniques, particularly,
electrorheological test, in this case no electrodes need to be
placed on the patient skin: this is particularly convenient
when dealing with pediatric patients. Particularly, in younger
children the electrophysiological testing are usually per-
formed in sedation, thus requiring a more complex clinical
setting (i.e. availability of operating theater together with
anesthesiologist). Chromatic pupillometry has been proven to
be effective in diagnosis of RP [34]. The protocol adopted in
the current study included dark-adaption and light adaptation
lasting less than 20 minutes, as opposed to standard elec-
troretinogram protocol requiring about 45 minutes without
sedation or more than one hour if performed in sedation.
However, the procedure for pupillometry is not standardized
and the results of chromatic pupillometry are not easily inter-
pretable by ophthalmologists. For this reason, a CDSS could
be useful to lighten the time needed for the diagnosis phase.
To this aim, given the relatively small amount of available
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signals, we decided not to include a feature selection stage,
in order to avoid over-fitting but we selected the most pre-
dictive features based on the existing literature. This is a very
conservative choice: in the future, when more data will be
available, it will be interesting comparing the set of features
we chose, with the output of a feature extraction step (e.g.
Correlation-based Feature Selection for machine learning)
[47], [48]. Regarding the classification algorithm, in order to
have a fast evaluation, we chose to design a CDSS relying on
SVMs optimized in terms of kernel, gamma and C. The CDSS
showed satisfactory performance in terms of specificity and
sensitivity in this pilot study. It is relevant to remind that,
to our knowledge, there are no studies about ML applied to
pupillometric data for genetic diseases in pediatric age, so the
comparison with the good results of other similar works must
be appropriately weighted. Actually, all the previous studies
on pupillometric examinations for IRDs relied on statistical
analysis without adopting any automatic classification algo-
rithms, even if there is an increasing interest on the using Al
for ophthalmological applications (as already shown above
in Table 1): almost all the selected studies focused on age-
related eye diseases and on retinal imaging and only one ML-
system has been proposed for supporting diagnosis of RP.
The system, proposed by Brancati et al. [22], was based on
fundus imaging and achieved a sensitivity of 75.66% and
a specificity of 99.57%. The CDSS proposed in this study
outperformed the system proposed by Brancati in terms of
sensibility and consequently seems more suitable for screen-
ing of the disease. However, our system, being based on a
relatively small data set, needs to be further tested on a larger
data set in future works.

VI. CONCLUSION

This paper describes a new approach for supporting clinical
decision for diagnosis of retinitis pigmentosa starting from
analysis of pupil response to chromatic light stimuli in pedi-
atric patients. The system was developed to clean artefacts,
extract features and help the diagnosis of RP using a ML
approach based on an ensemble model of two fine-tuned
SVMs. Performances were evaluated with a leave-one-out
cross-validation, also used to identify the best combination of
internal parameters of the SVM, separately for both the left
and right eyes. The class assigned to each eye were combined
in the end with an OR-like approach so as to maximize
the overall sensitivity of the CDSS; the ensemble system
achieved 84.6% accuracy, 93.7% sensitivity and 78.6% speci-
ficity. The small amount of data available for this work, calls
for further tests with a larger data pool for validating the
performance of the system. Future scope includes testing
the same approach with different devices. A problem that
came out with great evidence, at the signal acquisition stage,
is the frequent presence of movement artifacts. This is due to
the particular shape of the device, together with the young
age of the enrolled patients. Devices with different frame,
including also systems based on smartphones, are going to
be investigated. Moreover, considering the duration of the
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whole acquisition protocol, the procedure would benefit of
some systems to capture the attention of the young patient
(and his/her sight).
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