ARM Hardware Platform for Vehicular Monitoring and Tracking

Saurabh S. Chakole
(M. Tech) Dept. of Electronics Engineering
saurabhchakolefz@gmail.com

Asstt. Prof. Vivek R. Kapur
Dept. of Electronics & Tele-Communication,
R.G.C.E.R Nagpur, India
itzvivek@rediffmail.com

Asst. Prof. Y. A. Suryawanshi
Dept. of Electronics Engineering
Yogesh_Suryas@rediffmail.com

Abstract— Design of Vehicular monitoring and tracking system based on ARM using GSM and GPM is proposed. The vehicular module is used to track, monitor, and surveillance and finds the accident spot and intimate to the monitoring station. The proposed design provides information regarding vehicle Identity, speed, and position on real time basis. This information are collected by the ARM7 TDMI-S core processor LPC2148 by using different module and dispatch it to the monitoring station where it stores the information in database and display it on graphical user interface (GUI) that is user friendly. GUI is built on Microsoft Visual Studio 2010. This design provides information in real time using µc/OS-II.

Keywords— ARM7 TMI-S, MEMS Accelerometer, GPS, GSM, LPC2148, Wireless monitoring station, µc/OS-II.

I. INTRODUCTION

In today’s world as the population increases day by day the numbers of vehicles also increases on the roads and highways. This result in more accident that interns leads to the traffic jams and public get help instantaneously. This module provides information about the accident to the hospital and police station. As a result sudden help public life may save and the traffic jams are reduced.To improve the level of supervision and management for cargo transport vehicles, especially trucks carrying coal it is important to develop transport vehicles remote monitoring module [2].A server computer at the (remote) monitoring station, that is continuously waiting for data from the system, should record the actions of the vehicle into a database. This contains the information regarding Vehicle velocity, position, identity and temperature in two fashions. The information given to monitoring station is in continuous manner and when the accident occurs. The development of vehicular design brings public many convenience in life but also brings many problems at the same time, for example, traffic congestion, difficulty in monitoring dispersive vehicle, theft and other series of problems[4].We are intended to made this monitoring wireless using ARM7 hardware platform ported with real time operating system µc/OS-II.

Figure 1: vehicular system block diagram

Key feature of this design include:

a. Vehicle real-time monitoring by sending “its” information regarding velocity, Position (longitude, latitude) to the monitoring station and to the user/owners mobile that should help them to get medical help if accident or the theft.

b. Display that information on GUI and also at the same time these information are stored in the database.

c. User/owner has an access to get real-time position of a vehicle in real time.

d. Also in case of theft vehicle should be stop at the same time where this system is ported on the mobile vehicle.

e. It includes a temperature sensor that gives temperature in degree Celsius for monitoring the environmental conditions around the goods or other stuff in the transport vehicle.
The complete block diagram is as shown in figure 1. The vehicular system [VS] includes hardware that consists of an ARM 7 TDMI core processor, Accelerometer, GPS module, GSM module, SD memory card, 16x2 LCD, and temperature sensor. The whole VS works on a 5V or 9V dc regulated power supply. The GPS receiver module interfaced with UART1 of ARM processor provides speed and location information. The identity of a vehicle is fixed that is saved in a flash memory of a processor. The temperature sensor provides temperature per degree Celsius to an ARM processor. The temperature sensor is interfaced to an ADC1 of ARM processor. Vehicular speed, position and temperature are stored in a SD card. The SD card is interfaced to an ARM processor using SPI (Serial Peripheral Interface). All this information are shown on LCD that is interfaced with a GPIO0 and send it to a monitoring station (receiver side) by GSM module wirelessly that is interfaced with UART0 of ARM processor. Also the same information is given to a concern person to get that information anywhere anytime. The module requires GSM SIM (Subscriber Identity Module). As per the definite event stored in a program and when collision/accident occurs that is sense by an Accelerometer which is interfaced to ADC0 of ARM processor. The detail descriptions of all modules are as follows.

A. **GSM MODULE:**

![Figure 2: Interfacing of GSM module with ARM Processor on UART1](image)

Global System for Mobile communications (GSM) is the almost popular wireless standard for mobile phones in the world. GSM module allows transmission of Short message service (SMS) in TEXT mode and PDU mode. The proposed design uses SIM 300 GSM module in text mode. This design uses SIM300 GSM module that provide 900/1800/1900MHz Tri-band for VOICE, SMS, DATA, and FAX. This module operates on AT command over TTL interface. AT command is an abbreviation for Attention command that is recognized by GSM Module. This abbreviation is always used to start a command line to be send from TE (Terminal Equipment) to TA (Terminal Adaptor). The information contains information speed, position (longitude, latitude), identity and temperature of a vehicle that is transmitted to the monitoring station by the SMS through the GSM network.. SIM 300 Module works on 12V, 2A power supply. The module is configured at 9600 baud rate.

Figure 2 shows interfacing of GSM module with ARM Processor on UART1 where TxD pin of ARM processor is connected to RxD pin of GSM module and vice versa. The transmitted data from ARM processor using UART1 module contains information about Vehicle Identity that may be checked and displayed on Hyper-Terminal and as per the connection shown in fig 2 the same data is send to a specified mobile number and monitoring station as shown in figure3.

![Figure 3: Identity of a vehicle on mobile and on hyperterminal](image)

B. **GPS MODULE:**

Global Position System (GPS) is a space-based satellite navigation that provides location and time information in all weather conditions, anywhere on or near the Earth. GPS Receiver MT3318 Module is used that have a active patch antenna from Cirocomm. The GPS receiver tracks 51 satellites simultaneously. The module is mounted on the PCB along with the 3.3V low drop voltage regulator, transmit, receive and power indication LEDs, Schmitt trigger based buffer for 5V to 3.3V logic level conversion. This GPS receiver gives data output in standard National marine electronics association (NMEA) format. The GPS receiver gives -157dBm tracking sensitivity. The module is configured at 9600 baud rate. Module requires a 5V supply and can be interfaced with the 5V TTL / CMOS logic. The detail NMEA protocol:

1. GPGGA - Global Positioning System Fix Data
2. GPGSA - GPS DOP and active satellites
3. GPGSV - GPS Satellites in view
4. GPRMC: Recommended minimum specific GPS/Transit data Speed.
5. GPVTG: Track Made Good and Ground
Figure 4 shows interfacing of GPS module with ARM Processor on UART1, where TxD pin of ARM processor is connected to RxD pin of GPS module and vice versa. The data from GPS receiver in NMEA format is received on ARM processor using UART1 protocol which contains information about Vehicle position (longitude, latitude) and speed. This information can be checked on HyperTerminal of a computer using USB to serial convertor. Per the connection shown in Figure 4, the same data is sent to a specified mobile number and monitoring station as shown in Figure 5.

C. Accelerometer

An accelerometer measures acceleration. Acceleration is a measure of how quickly speed changes. Accelerometer sensor is used to measure static (Earth Gravity) or dynamic acceleration in all three axes, forward/backward, left/right and up/down. The output of accelerometer provides 1.65V to 3.3V in positive direction and in negative direction the voltage drop from 1.65V to 0V. The output of accelerometer is in analogue form with three different output voltages each representing X, Y and Z direction of motion. These three voltage signals are processed through ADC0 on three different Channels available on ARM. ADC0 is configured at 4.5MHz clock from system peripheral clock. The 8 bit digital output from ADC0 is fed to UART1 of ARM. Accelerometer is used in this design for the collision detection. The maximum output voltage of accelerometer module is 3.3V that is a CMOS voltage of the processor.

D. ARM7 Processor

The conventional 8 and 16-bit Microcontrollers have their deficiencies when compared with 32-bit microcontroller. This proposed system design uses the ARM processor. ARM architecture is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode mechanism are much simpler than those of micro programmed Complex Instruction Set Computers. This simplicity results in a high instruction throughput and impressive real-time interrupt response from a small and cost-effective processor core. The Philips LPC2148 which is based on 32 bit ARM7 TDMI core supporting real time simulation. When ARM processor combined with RTOS with timing constraint can be realized for the data acquisition and transmission of data with high precision.

E. DATA STORAGE

The system includes memory card which is used to store data. The data contains vehicle ‘ID’, ‘Position’ (Longitude’, ‘Latitude’), date, time and velocity of a vehicle. The memory card can be expanded depending upon the purpose. The data storage provision is implemented using Serial Peripheral Interface (SPI) protocol supported by the LPC2148 ARM7 processor. This stored data can be accessed any time for monitoring (speed of a vehicle, correct path, collision etc.), comparison, and traffic analysis purpose.

II. RECEIVER/MONITORING SECTION:

GSM module provides information in text mode. The information is given to a computer by interfacing of GSM module to computer by use of USB to SERIAL convertor. Most of the laptops are not having serial port and also in
certain PC. As the size of the laptop are shrinking so the serial port are removed. The Location, Velocity and Identity of a vehicle can be display to the GUI and stored in a database. Figure 6 shows interfacing of GSM module with the PC using USB to serial convertor. The data received from GSM module is stored in data base and also it can be show on GUI. In case of accident occur the position of vehicle can be easily track use of Google map software. The monitoring station uses a single GSM module which can communicate with number of modules at run time which is a high real time need. This information can also be sending to the nearest hospital/police station to get help easily. This will certainly save the lives.

III. SOFTWARE USED:

A. Keil µvision4 IDE:

Figure 7: Simulation result of configured ADC0 and UART1 on KeilµVision4 of LPC2148.

KeilµVision4 IDE (Integrated Development Environment) is a Windows based front end for the C Compiler and assembler. KeilµVision4 is used for writing embedded C programs. Embedded C is a high level language, which includes many aspects of the ANSI (American National Standard Institute) C programming language. Standard libraries are altered or enhanced to address the peculiarities of an embedded target processor (7). The signal from accelerometer module is processed by the processor. The analog signal from this module is applied to the on-chip peripheral ADC0. This ADC0 is configured as a 10-bit output data which gives high precision compared to the 8-bit microprocessors. This digital data is transmitted through UART1. UART1 transmits the data 8-bit at a time. These digital values are transmitted to GSM module through UART1. Figure 7 shows simulation result of ADC0 with UART1 collectively on KeilµVision4 software.

B. GUI

The GUI for the proposed system is designed on Visual Studio 2010. C# is a simple, modern, object-oriented, and type-safe programming language. Microsoft’s C# compiler for the .NET Framework is a conforming implementation of both of these standards. Exception handling provides a structured and extensible approach to error detection and recovery. Also this language is compatible with all Microsoft applications.

C. µc/OS-II

µc/OS-II is a real time operating system that is portable, romable, scalable, preemptive, real-time deterministic multitasking kernel for microprocessors, microcontrollers and DSPs. µC/OS-II manages up to 250 application tasks(6). RTOS can be ported to ARM hardware, then the system can deal with much more complicated tasks. Real-Time (RT) indicates an expectant response or reaction to an event on the instant of its evolution. And Operating System (OS) is a system program that provides an interface between hardware and application programs. The µc/OS-II is used for timing constraints.

IV. CONCLUSION:

The Vehicular System provides information of a vehicle like velocity, position, through a GPS module and identity of a vehicle to a monitoring station and to a mobile phone according to a definite event stored in a program or a query from a monitoring station.
Accelerometer senses the collision of the vehicle and sends this information in real time to a hospital/police station. The monitoring station display these information on GUI also stored these information in database for further process according to a program. The system is useful in much application such as surveillance, security, tracking, which may be installed in cargo trucks, cars, motorcycle, and boat. The system can be used in many applications.

REFERENCES:

1) Zhang Wen, Jiang Meng" Design of Vehicle positioning System Based on ARM”, Business Management and Electronic Information (BMEI), International Conference 2011 IEEE.

2) Lu Xutao1, Cui DongSen2” Design of Transport Vehicles Remote Monitoring System”, 2nd International Conference on Education Technology and Computer (ICETC), 2010

3) Peng Chen, “ShuangLiu, Intelligent Vehicle Monitoring System Based on GPS, GSM and GIS”, WASE International Conference on Information Engineering, 2010

5) M.AL-Rousan, A. R. Al-Ali and K. Darwish, published a paper title” GSM-Based Mobile Tele Monitoring and Management System for Inter-Cities Public Transportations”, International Conference on Industrial Technology (ICIT).This paper presents a Tele-monitoring, 2004 IEEE

6) http://micrium.com/rtos/ucosii/overview/